Show simple item record

dc.contributor.advisorPosada Buitrago, Martha Lucía
dc.contributor.advisorVargas Duarte, Jimmy Jolman
dc.contributor.authorTorres Valderrama, Claudia Patricia
dc.date.accessioned2024-05-22T21:11:37Z
dc.date.available2024-05-22T21:11:37Z
dc.date.issued2022-02
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/6903
dc.description.abstractSon varios los factores que afectan la salud de las aves en la producción avícola, sin embargo, se ha dedicado poca atención a los artrópodos que pueden actuar como posibles vectores de enfermedad, siendo el actor principal Alphitobius diaperinus. En respuesta a esta problemática, de lo que representa este artrópodo en avicultura, se plantearon dos enfoques: el primero basado en metagenómica por secuenciación no dirigida o shotgun, en el que se secuenció todo el material genómico y se realizó el correspondiente análisis bioinformático, que permitió conocer la diversidad y la abundancia de las comunidades microbianas; y el segundo, la determinación de las especies con potencial biotecnológico y de los posibles genes de resistencia antimicrobianos en las especies con riesgo de patogenicidad identificadas en el estudio. Este trabajo amplía el conocimiento sobre la comunidad microbiana de A. diaperinus en relación a su potencial en bioprospección, plantear una alerta a la comunidad médica, y los avicultores de los riesgos por la posible transferencia de genes de resistencia a los antibióticos. Además se proponen recomendaciones a los avicultores en relación al biomanejo de este artrópodo.spa
dc.description.abstractThere are several factors that affect the health of birds in poultry production, however, little attention has been devoted to arthropods that can act as possible vectors of disease, the main actor being Alphitobius diaperinus. In response to this problem, of what this arthropod represents in poultry farming, two approaches were proposed: the first based on metagenomics by non- directed sequencing or shotgun, in which all the genomic material was sequenced and bioinformatic analysis was carried out, which allowed knowing the diversity and abundance of microbial communities; and the second, the determination of the species with biotechnological potential and the possible antimicrobial resistance genes in the species with risk of pathogenicity identified in the study. This work expands the knowledge about the microbial community of A. diaperinus in relation to its potential in bioprospecting, raising an alert to the medical community, and poultry farmers of the risks due to the possible transfer of antibiotic resistance genes. In addition, recommendations are proposed to poultry farmers in relation to the biomanagement of this arthropod.eng
dc.description.tableofcontentsContenido 1. Introducción 13 2. Objetivos 15 2.1 Objetivo general 15 2.2 Objetivos específicos 15 3. MARCO CONCEPTUAL Y GENERALIDADES 16 3.1 Alphitobius diaperinus 16 3.2 Diversidad del microbioma de los escarabajos 17 3.3 Alphitobius diaperinus como vector de enfermedades avícolas18 3.4 Vectores como portadores de bacterias y de genes de resistencia20 3.4.1 Genes de resistencia en pollos de engorde y su difusión en granjas avícolas21 3.4.2 Implicaciones de la resistencia antimicrobiana (AMR) en salud pública23 3.5 Metagenómica 26 3.6 ARG y metagenómica 31 3.7 Aplicación de metagenómica al estudio de artrópodos 31 4. DESARROLLO EXPERIMENTAL 33 4.1 MATERIALES Y MÉTODOS 33 4.1.1 Recolección y procesamiento de muestras de adultos del artrópodo Alphitobius diaperinus 34 4.1.2 Procesamiento de muestras de adultos del artrópodo Alphitobius diaperinus34 4.2 Extracción de ADN de las muestras de Alphitobius diaperinus 35 4.2.1 Maceración de las muestras en mortero con nitrógeno líquido 36 4.2.2 Verificación de calidad de ADN par secuenciación 37 4.3 Secuenciación de ADN 38 4.4 Análisis bioinformático 38 5. RESULTADOS Y DISCUSIÓN 39 5.1 EXTRACCIÓN Y CUANTIFICACIÓN DE ADN DE Alphitobius diaperinus 5.2 Ensayo de PCR convencional 39 5.3 Resultados de la secuenciación y análisis 41 5.3.1 Análisis bioinformático42 5.4 Bacterias identificadas en el microbioma de adultos de Alphitobius diaperinus 44 5.4.1 Actinobacteria 51 5.4.2 Firmicutes 54 5.4.3 Proteobacterias 56 5.4.4 Bacteroidetes 59 5.4.5 Bacterias patógenas identificadas en adultos de A. diaperinus 60 5.5 Hongos identificados en adultos de A. diaperinus …72 5.5.1 Ascomycota73 5.5.2 Mucoromycota 76 5.6 Virus …78 5.7 Relación con otros estudios …79 6. Recomendaciones para futuros estudios 85 7. Conclusiones 87 8. Referencias Bibliográficas 89 Anexos 120spa
dc.format.extent130p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleEstudio del microbioma de Alphitobius diaperinus recolectado en una granja avícola mediante una aproximación metagenómica.spa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.corporatenameUniversidad Colegio Mayor de Cundinamarcaspa
dc.contributor.researchgroupCEPARIUMspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Microbiologíaspa
dc.description.researchareaAgroambientalspa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.C., Colombiaspa
dc.publisher.programMaestría en Microbiologíaspa
dc.relation.referencesMoreno Gonzalo (FENAVI). avicultores 2019 cuales seran las perspectivas para la avicultura. avicultores. 2019;268.spa
dc.relation.referencesMoreno Gonzalo (FENAVI). 2021, un año de grandes retos. Avicultores [Internet]. 2021;286:52. Disponible en: https://fenavi.org/wp-content/uploads/2019/09/revista-274.pdfspa
dc.relation.referencesCecco C, Franceschi D. Determination of growth stages of Alphitobius diaperinus in broiler chickens farm Resumen Resumen Resumen Resumen. Rev Argentina Prod Anim. 2005;25:93-9.spa
dc.relation.referencesNhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial resistance in bacterial poultry pathogens: A review. Front Vet Sci. 2017;4(AUG):1-17.spa
dc.relation.referencesOsimani A, Milanović V, Cardinali F, Garofalo C, Clementi F, Ruschioni S, et al. Distribution of transferable antibiotic resistance genes in laboratory-reared edible mealworms (Tenebrio molitor L.). Front Microbiol. 19 de noviembre de 2018;9(NOV).spa
dc.relation.referencesCrippen TL. PT. Conjugative Transfer of Plasmid-Located Antibiotic Resistance Genes Within the Gastrointestinal Tract. 2009;6(7).spa
dc.relation.referencesEsquivel JF, Crippen TL, Ward LA. Improved visualization of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae)-Part I: Morphological features for sex determination of multiple stadia. Psyche (London). 2012;2012spa
dc.relation.referencesTrevor Lambkin. Darkling Beetles. 2006;spa
dc.relation.referencesVergara C, Gazani R. Biología de Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Vol. 39, Revista Peruana de Entomología. 1996. p. 1-5.spa
dc.relation.referencesDunford JC, Kaufman PE. Lesser Mealworm , Litter Beetle , Alphitobius diaperinus ( Panzer ) ( Insecta : Coleoptera : Tenebrionidae ) 1. 2007;(February):1-10.spa
dc.relation.referencesKolasa M, Ścibior R, Mazur MA, Kubisz D, Dudek K, Kajtoch Ł. How Hosts Taxonomy, Trophy, and Endosymbionts Shape Microbiome Diversity in Beetles. Microb Ecol. 2019;78(4):995-1013.spa
dc.relation.referencesKaczmarczyk-Ziemba et al. First Insight into Microbiome Profiles of Myrmecophilous Beetles and Their Host , Red Wood. MDPI journal}. 2020;1-19.spa
dc.relation.referencesKajtoch Ł, Kolasa M, Kubisz D, Gutowski JM, Ścibior R, Mazur MA, et al. Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles. Sci Rep. 2019;9(1):1-15.spa
dc.relation.referencesSilver A, Perez S, Gee M, Xu B, Garg S, Will K. Persistence of the ground beetle ( Coleoptera : Carabidae ) microbiome to diet manipulation. 2020;spa
dc.relation.referencesWan. Divergence in Gut Bacterial Community Structure between Male and Female Stag Beetles Odontolabis. MDPI. 2020;1-10.spa
dc.relation.referencesEngel P, Moran NA. The gut microbiota of insects – diversity in structure and function. 2013;37:699-735.spa
dc.relation.referencesLeffer AM, Kuttel J, Martins LM, Pedroso AC, Astolfi-Ferreira CS, Ferreira F, et al. Vectorial competence of larvae and adults of alphitobius diaperinus in the transmission of salmonella enteritidis in poultry. Vector-Borne Zoonotic Dis. 2010;10(5):481-7.spa
dc.relation.referencesTschinkel WR. A comparative study of the chemical defensive system of tenebrionid beetles III. Morphology of the glands. J Morphol. 1975;145(3):355-70.spa
dc.relation.referencesRetamales J, Vivallo F, Robeson J. Insects associated with chicken manure in a breeder poultry farm of Central Chile Insectos asociados a fecas de pollo en una avícola de Chile Central. Arch Med Vet. 2011;43:79-83.spa
dc.relation.referencesCasas ED Las, Harein PK, Deshmukh DR, Pomeroy BS. The Relationship Between the Lesser Mealworm 1 and Avian Viruses. 1. Reovirus 24 2. Environ Entomol. 1973;2(6):1043-7.spa
dc.relation.referencesMcAllister JC, Steelman CD, Skeeles JK, Newberry LA, Gbur EE. Reservoir Competence of Alphitobius diaperinus (Coleoptera: Tenebrionidae) for Escherichia coli (Eubacteriales: Enterobacteriaceae). J Med Entomol. 1996;33(6):983-7.spa
dc.relation.referencesStrother KO, Dayton Steelman C, Gbur EE. Reservoir competence of lesser mealworm (Coleoptera: Tenebrionidae) for Campylobacter jejuni (Campylobacterales: Campylobacteraceae). J Med Entomol. 2005;42(1):42-7.spa
dc.relation.referencesHakeem MJ, Lu X. Survival and Control of Campylobacter in Poultry Production Environment. Front Cell Infect Microbiol. 2021;10(January):1-18.spa
dc.relation.referencesGoodwin MA, Waltman WD. Transmission of Eimeria, viruses, and bacteria to chicks: Darkling beetles (alphitobius diaperinus) as vectors of pathogens. J Appl Poult Res. 1996;5(1):51-5.spa
dc.relation.referencesHuber K, Gouilloud L, Zenner L. A preliminary study of natural and experimental infection of the lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae) with Histomonas meleagridis (Protozoa: Sarcomastigophora). Avian Pathol. 2007;36(4):279-82.spa
dc.relation.referencesRoche AJ, Cox NA, Richardson LJ, Buhr RJ, Cason JA, Fairchild BD, et al. Transmission of Salmonella to broilers by contaminated larval and adult lesser mealworms, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Poult Sci. 2009;88(1):44-8.spa
dc.relation.referencesCrippen TL, Zheng L, Sheffield CL, Tomberlin JK, Beier RC, Yu Z. Transient gut retention and persistence of Salmonella through metamorphosis in the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). J Appl Microbiol. 2012;112(5):920-6.spa
dc.relation.referencesAkter S, Sabuj AAM, Haque ZF, Rahman MT, Kafi MA, Saha S. Detection of antibiotic-resistant bacteria and their resistance genes from houseflies. Vet World. 2020;13(2):266-74.spa
dc.relation.referencesAhmad A, Ghosh A, Schal C, Zurek L. Insects in confined swine operations carry a large antibiotic resistant and potentially virulent enterococcal community. BMC Microbiol [Internet]. 26 de enero de 2011 [citado 18 de febrero de 2020];11(1):23. Disponible en: http://bmcmicrobiol.biomedcentral.com/articles/10.1186/1471-2180-11-23spa
dc.relation.referencesZurek L, Gorham JR. Insects As Vectors Of Foodborne Pathogens. Wiley Handb Sci Technol Homel Secur. 2008;1-15.spa
dc.relation.referencesZurek L, Ghosh A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Vol. 80, Applied and Environmental Microbiology. American Society for Microbiology; 2014. p. 3562-7.spa
dc.relation.referencesNeupane S, White K, Thomson JL, Zurek L. Environmental and Sex E ff ects on Bacterial Carriage. Insect. 2020;spa
dc.relation.referencesPai HH. Multidrug resistant bacteria isolated from cockroaches inPai, H. H. (2013). Multidrug resistant bacteria isolated from cockroaches in long-term care facilities and nursing homes. Acta Tropica, 125(1), 18-22. https://doi.org/10.1016/j.actatropica.2012.08.0. Acta Trop [Internet]. 2013;125(1):18-22. Disponible en: http://dx.doi.org/10.1016/j.actatropica.2012.08.016spa
dc.relation.referencesMoges F, Eshetie S, Endris M, Huruy K, Muluye D, Feleke T, et al. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia. Biomed Res Int. 2016;2016(January).spa
dc.relation.referencesJensen LB, Frimodt-Møller N, Aarestrup FM. Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol Lett. 1999;170(1):151-8.spa
dc.relation.referencesChannaiah LH, Subramanyam B, McKinney LJ, Zurek L. Stored-product insects carryantibiotic- resistant and potentially virulent enterococci. FEMS Microbiol Ecol. 2010;74(2):464-71.spa
dc.relation.referencesGarces Leah. Reemplazar la carne de res con pollo no es tan bueno para el planeta como crees - Vox [Internet]. Vox. 2019 [citado 3 de abril de 2020]. Disponible en: https://www.vox.com/future-perfect/2019/12/4/20993654/chicken-beef-climate-environment- factory-farmsspa
dc.relation.referencesBlaak H, Van Hoek AHAM, Hamidjaja RA, Van Der Plaats RQJ, Kerkhof-De Heer L, De Roda Husman AM, et al. Distribution, numbers, and diversity of ESBL-producing E. coli in the poultry farm environment. PLoS One. 2015;10(8):1-23.spa
dc.relation.referencesHayashi W, Ohsaki Y, Taniguchi Y, Koide S, Kawamura K, Suzuki M, et al. High prevalence of blaCTX-M-14 among genetically diverse Escherichia coli recovered from retail raw chicken meat portions in Japan. Int J Food Microbiol [Internet]. 2018;284(March):98-104. Disponible en: https://doi.org/10.1016/j.ijfoodmicro.2018.08.003spa
dc.relation.referencesLeverstein-van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, van den Munckhof MP, van Essen-Zandbergen A, et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect [Internet]. 2011;17(6):873-80. Disponible en: http://dx.doi.org/10.1111/j.1469-0691.2011.03497.xspa
dc.relation.referencesVogt D, Overesch G, Endimiani A, Collaud A, Thomann A, Perreten V. Occurrence and genetic characteristics of third-generation cephalosporin-resistant Escherichia coli in Swiss retail meat. Microb Drug Resist. 2014;20(5):485-94spa
dc.relation.referencesFalgenhauer L, Imirzalioglu C, Oppong K, Akenten CW, Hogan B, Krumkamp R, et al. Detection and characterization of ESBL-producing Escherichia coli from humans and poultry in Ghana. Front Microbiol. 2019;10(JAN):1-8.spa
dc.relation.referencesYang Y, Ashworth AJ, Willett C, Cook K, Upadhyay A, Owens PR, et al. Review of Antibiotic Resistance, Ecology, Dissemination, and Mitigation in U.S. Broiler Poultry Systems. Front Microbiol. 2019;10(November):1-10.spa
dc.relation.referencesArmbruster WJ, Roberts T. Food Safety Economics. Food Saf Econ. 2018;293-322.spa
dc.relation.referencesAmann S, Neef K, Kohl S. Antimicrobial resistance (AMR). Eur J Hosp Pharm . 2019;26(3):175-7.spa
dc.relation.referencesHe yin LIang. Dissemination of Antibiotic Resistance Genes in Representative Broiler Feedlots Environments: Identification of Indicator ARGs and Correlations with Environmental Variables. 2014;(8620).spa
dc.relation.referencesWallmann J, Schröter K, Wieler LH, Kroker R. National antibiotic resistance monitoring in veterinary pathogens from sick food-producing animals: The German programme and results from the 2001 pilot study. Int J Antimicrob Agents. 2003;22(4):420-8.spa
dc.relation.referencesGarofalo C, Osimani A, Milanović V, Taccari M, Cardinali F, Aquilanti L, et al. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol [Internet]. 2017;62:15-22. Disponible en: http://dx.doi.org/10.1016/j.fm.2016.09.012spa
dc.relation.referencesSeptimus EJ. Antimicrobial Resistance: An Antimicrobial/Diagnostic Stewardship and Infection Prevention Approach. Vol. 102, Medical Clinics of North America. 2018. p. 819-29.spa
dc.relation.referencesMcEwen SA, Collignon PJ. Antimicrobial Resistance: a One Health Perspective. Microbiol Spectr. 2018;6(2).spa
dc.relation.referencesSnneringer Stacy, McDonald James KNMBW. MK. Economics of Antibiotic Use in U . S . Swine and Poultry Production. Choices [Internet]. 2015;30(1):1-11. Disponible en: http://ageconsearch.umn.edu/bitstream/197166/2/cmsarticle_404.pdf%5Cnhttp://www.choice smagazine.org/choices-magazine/theme-articles/theme-overview/economics-of-antibiotic-use- in-us-swine-and-poultry-productionspa
dc.relation.referencesSarmah AK, Meyer MT, Boxall ABA. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 2006;65(5):725-59.spa
dc.relation.referencesLi Dan. Water Disinfection Byproducts Induce Antibiotic ResistanceRole of Environmental Pollutants in Resistance Phenomena. Env Sci Tecnol. 2016;176(1):139-48.spa
dc.relation.referencesNeill JO’. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations The Review on Antimicrobial Resistance Chaired. 2014;(December).spa
dc.relation.referencesde Kraker MEA, Stewardson AJ, Harbarth S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016;13(11):1-6.spa
dc.relation.referencesTang KL, Caffrey NP, Nóbrega DB, Cork SC, Ronksley PE, Barkema HW, et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food- producing animals and human beings: a systematic review and meta-analysis. Lancet Planet Heal. 2017;1(8):e316-27spa
dc.relation.referencesGóchez D, Raicek M, Ferreira JP, Jeannin M, Moulin G, Erlacher-Vindel E. OIE annual report on antimicrobial agents intended for use in animals: Methods used. Front Vet Sci. 2019;6(SEP).spa
dc.relation.referencesRivera I and. No TitleMetagenomics for microbiology. 2015.spa
dc.relation.referencesUribe Vélez D. Metagenómica ¿Una oportunidad para el estudio de la diversidad microbiana en Colombia? Rev Colomb Biotecnol. 2009;XI(2):4-7.spa
dc.relation.referencesHandelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chem Biol. 1998;5(10).spa
dc.relation.referencesWoese C et al. Bacterial evolution. Can J Microbiol. 1988;34(4):547-51.spa
dc.relation.referencesPace NR, Stahl DA, Lane DJ, Olsen GJ. The Analysis of Natural Microbial Populations by Ribosomal RNA Sequences. 1986;1-55.spa
dc.relation.referencesHandelsman J. Metagenomics: Application of Genomics to Uncultured Microorganisms. Microbiol Mol Biol Rev. 2004;69(1):195-195.spa
dc.relation.referencesRoumpeka DD, Wallace RJ, Escalettes F, Fotheringham I, Watson M. A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Front Genet. 2017;8(MAR):1-10.spa
dc.relation.referencesValenzuela-González F, Casillas-Hernández R, Villalpando E, Vargas-Albores F. El Gen aRNR 16s en el estudio de comunidades microbianas marinas. Ciencias Mar. 2015;41(4):297-313.spa
dc.relation.referencesSchoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A. 2012;109(16):6241-6.spa
dc.relation.referencesPérez-Cobas AE, Gomez-Valero L, Buchrieser C. Metagenomic approaches in microbial ecology: An update on whole-genome and marker gene sequencing analyses. Microb Genomics. 2020;6(8):1-22.spa
dc.relation.referencesSharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci. 2014;5(JUN):1-14.spa
dc.relation.referencesDeLong EF. Oceans of Archaea. ASM News. 2003;69(10):503-11.spa
dc.relation.referencesMaxam AM, Gilbert W. A new method for sequencing DNA. 1977;74(2):560-4.spa
dc.relation.referencesSanger F, Nicklen S, Coulson A. DNA sequencing with chain-terminating. Proc Natl Acad Sci USA. 1977;74(12):5463-7.spa
dc.relation.referencesMullis KB. The unusual origin of the polymerase chain reaction. Sci Am. 1990;262(4):56-65.spa
dc.relation.referencesSmith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, et al. Fluoresence detection in automated DNA sequence analyses. Nature. 1986;321:674-9.spa
dc.relation.referencesSchmidt TM, DeLong EF, Pace NR. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991;173(14):4371-8.spa
dc.relation.referencesBreitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, et al. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A. 2002;99(22):14250-5.spa
dc.relation.referencesWicker T, Schlagenhauf E, Graner A, Close TJ, Keller B, Stein N. 454 sequencing put to the test using the complex genome of barley. 2006;11:1-11.spa
dc.relation.referencesAnsorge WJ. Next-generation DNA sequencing techniques. N Biotechnol. 2009;25(4):195-203.spa
dc.relation.referencesRhoads A, Au KF. PacBio Sequencing and Its Applications. Genomics, Proteomics Bioinforma [Internet]. 2015;13(5):278-89. Disponible en: http://dx.doi.org/10.1016/j.gpb.2015.08.002spa
dc.relation.referencesBowden R, Davies RW, Heger A, Pagnamenta AT, Cesare M De, Oikkonen LE, et al. Sequencing of human genomes with nanopore technology. Nat Commun [Internet]. 2019;1-9. Disponible en: http://dx.doi.org/10.1038/s41467-019-09637-5spa
dc.relation.referencesDijk V. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418-26.spa
dc.relation.referencesDijk EL Van, Jaszczyszyn Y, Thermes C. Library preparation methods for next-generation sequencing : Tone down the bias. Exp Cell Res [Internet]. 2014;322(1):12-20. Disponible en: http://dx.doi.org/10.1016/j.yexcr.2014.01.008spa
dc.relation.referencesMoreno-Indias, I., & Tinahones FJ. Metagenomics. En: Principles of Nutrigenetics and Nutrigenomics. 2019.spa
dc.relation.referencesBronner IF, Quail MA. Best Practices for Illumina Library. 2019;102:1-48.spa
dc.relation.referencesFakhrai-rad H, Pourmand N, Ronaghi M. Pyrosequencing ™ : An Accurate Detection Platform for Single Nucleotide Polymorphisms. 2002;485:479-85.spa
dc.relation.referencesMardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008;24(3):133-41.spa
dc.relation.referencesLahens NF, Ricciotti E, Smirnova O, Toorens E, Kim EJ, Baruzzo G, et al. A comparison of Illumina and Ion Torrent sequencing platforms in the context of differential gene expression. BMC Genomics. 2017;18(1):602.spa
dc.relation.referencesFarage Dosantos D, Istvan P, Quirino BF. Functional Metagenomics as a Tool for Identification of New Antibiotic Resistance Genes from Natural Environments. Microb Ecol [Internet]. 2016; Disponible en: http://dx.doi.org/10.1007/s00248-016-0866-xspa
dc.relation.referencesBerglund F, Österlund T, Boulund F, Marathe NP, Larsson DGJ, Kristiansson E. Identification and reconstruction of novel antibiotic resistance genes from metagenomes. Microbiome. 2019;7(1):1-14.spa
dc.relation.referencesArango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6(1):1-15.spa
dc.relation.referencesTan MP, Wong LL, Razali SA, Afiqah-Aleng N, Mohd Nor SA, Sung YY, et al. Applications of Next- Generation Sequencing Technologies and Computational Tools in Molecular Evolution and Aquatic Animals Conservation Studies: A Short Review. Evol Bioinforma. 2019;15.spa
dc.relation.referencesMalacrino A. et al. Meta-Omics Tools in the World of Insect-Microorganism Interactions. 2018;spa
dc.relation.referencesGrünwald S, Pilhofer M, Höll W. Microbial associations in gut systems of wood- and bark- inhabiting longhorned beetles [Coleoptera: Cerambycidae]. Syst Appl Microbiol. 2010;33(1):25- 34.spa
dc.relation.referencesMohammed WS, Ziganshina EE, Shagimardanova EI, Gogoleva NE, Ziganshin AM. Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae). Sci Rep. 2018;8(1):1-12.spa
dc.relation.referencesEsposti MD, Romero EM. The functional microbiome of arthropods. 2017;1-26.spa
dc.relation.referencesMcKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol [Internet]. 2016;17(1):1-18. Disponible en: http://dx.doi.org/10.1186/s13059-016-1088-8spa
dc.relation.referencesAndújar C, Arribas P, Motyka M, Bocek M, Bocak L, Linard B, et al. New mitochondrial genomes of 39 soil dwelling Coleoptera from metagenome sequencing. Mitochondrial DNA Part B Resour [Internet]. 2019;4(2):2447-50. Disponible en: https://doi.org/10.1080/23802359.2019.1637289spa
dc.relation.referencesMason CJ, Campbell A, Scully ED, Hoover K. Bacterial and fungal midgut community dynamics and transmission between life stages in an invasive xylophage. Microb Ecol. 2018;spa
dc.relation.referencesPauchet Y, Wilkinson P, Chauhan R, Richard H. Diversity of Beetle Genes Encoding Novel Plant Cell Wall Degrading Enzymes. 2010;5(12).spa
dc.relation.referencesCucini C, Leo C, Vitale M, Frati F, Carapelli A, Nardi F. Bacterial and fungal diversity in the gut of polystyrene-fed Alphitobius diaperinus (Insecta: Coleoptera). Anim Gene [Internet]. 2020;17- 18(October):200109. Disponible en: https://doi.org/10.1016/j.angen.2020.200109spa
dc.relation.referencesCrippen TL, Sheffield C. External surface disinfection of the lesser mealworm (Coleoptera: Tenebrionidae). J Med Entomol. 2006;43(5):916-23.spa
dc.relation.referencesBancoadn. Programa de control de calidad de ácidos nucleicos. Banco Nacional de ADN Carlos III (Universidad de Salamanca). Banco ADN [Internet]. 2020;1-10. Disponible en: www.bancoadn.orgspa
dc.relation.referencesKim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Res. 2016;26(12):1721-9.spa
dc.relation.referencesFatahi-bafghi M. Antibiotic resistance genes in the Actinobacteria phylum. 2019;(c).spa
dc.relation.referencesAnandan et al. An intoduction to Actinobacteria. Intech [Internet]. 2016;13. Disponible en: file:///C:/Users/usuario/Desktop/ANANDAN 2016 Introduction actinobacteria.pdfspa
dc.relation.referenceslewin et al. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Physiol Behav. 2016;176(1):139-48.spa
dc.relation.referencesLatha S, Dhanasekaran D. Research Article Antibacterial and extracellular enzyme activities of gut actinobacteria isolated from Gallus gallus domesticus and Capra hircus. 2013;5(11):379-85.spa
dc.relation.referencesOnraedt A, Soetaert W, Vandamme E. Industrial importance of the genus Brevibacterium. 2005;527-33.spa
dc.relation.referencesBuczolits S, Busse HJ. Brachybacterium . Bergey’s Man Syst Archaea Bact. 2015;1-10.spa
dc.relation.referencesLehhmann; Neumann. Corynebacterium. Bergey’s Manual of Systematics of Archaea and Bacteria. 2010. 1-70 p.spa
dc.relation.referencesLi J, Zhao GZ, Zhang YQ, Klenk HP, Pukall R, Qin S, et al. Dietzia schimae sp. nov. and Dietzia cercidiphylli sp. nov., from surface-sterilized plant tissues. Int J Syst Evol Microbiol. 2008;58(11):2549-54.spa
dc.relation.referencesCrovadore J, Calmin G, Chablais R, Cochard B. Whole-Genome Sequence of Enteractinococcus helveticum sp. nov. Strain UASWS1574 Isolated from Industrial Used Waters. 2016;4(4):4-5.spa
dc.relation.referencesDas L, Deb S, Das SK. Glutamicibacter mishrai sp . nov ., isolated from the coral Favia veroni from Andaman Sea. Arch Microbiol [Internet]. 2019;(0123456789). Disponible en: https://doi.org/10.1007/s00203-019-01783-0spa
dc.relation.referencesJürgen. and Wieser M. Glutamicibacter. 2016;spa
dc.relation.referencesArenskötter M, Bröker D, Steinbüchel A. Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol. 2004;70(6):3195-204.spa
dc.relation.referencesLee SD. Labedella gwakjiensis gen. nov., sp. nov., a novel actinomycete of the family Microbacteriaceae. Int J Syst Evol Microbiol. 2007;57(11):2498-502spa
dc.relation.referencesSerrano JS. Identificación y diagnóstico de Actinomicetales patógenos. 2005.spa
dc.relation.referencesCollins et al. Genus Species Subspecies Author Brachybacterium faecium Collins et al . 1988 Reclassification Status Type spezies Schefferle 6-10 Hazard group Author ( s ) Title Volume Page ( s ) Year Collins M . D ., J . Brown and D . Jones . bacterium from poultry deep. 1988;spa
dc.relation.referencesLapidus A, Pukall R, LaButtii K, Copeland A, del Rio TG, Nolan M, et al. Complete genome sequence of Brachybacterium faecium type strain (schefferle 6-10 T). Stand Genomic Sci. 2009;1(1):3-11.spa
dc.relation.referencesTakeuchi M, Yokota A. Taxonomic Study of the Genus Brachybacterium : Proposal of. 1995;(13):160-8.spa
dc.relation.referencesZiganshina EE, Mohammed WS, Shagimardanova EI, Ziganshin AM. Draft genome sequence data and analysis of Brachybacterium sp. strain EE-P12 isolated from a laboratory-scale anaerobic reactor. Data Br [Internet]. 2018;21:2576-80. Disponible en: https://doi.org/10.1016/j.dib.2018.11.104spa
dc.relation.referencesForquin M, Weimer BC. Brevibacterium. 2014;1.spa
dc.relation.referencesPlociniczak T et al. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd , Zn , Cu Phytoextraction by White Mustard. 2016;7(February):1-10.spa
dc.relation.referencesBonavila Juan C, Michelena Bengoechea A, Zubeltzu Sese B, Goenaga Sánchez MÁ. Recurrent endocarditis due to Brevibacterium casei: case presentation and a review of the literature. Enferm Infecc Microbiol Clin. 2016;35(2):127-8.spa
dc.relation.referencesRodriguez H, Reveron I, Doria F, Costantini A, De Las Rivas B, Muňoz R, et al. Degradation of ochratoxin a by brevibacterium species. J Agric Food Chem. 2011;59(19):10755-60spa
dc.relation.referencesElahi A, Rehman A. Comparative behavior of two gram positive Cr 6+ resistant bacterial strains Bacillus aerius S1 and Brevibacterium iodinum S2 under hexavalent chromium stress. Biotechnol Reports [Internet]. 2019;21(2018):e00307. Disponible en: https://doi.org/10.1016/j.btre.2019.e00307spa
dc.relation.referencesSchefferle HE. Coryneform Bacteria in Poultry Deep Litter. J Appl Bacteriol. 1966;29(1):147-60.spa
dc.relation.referencesKokcha S, Ramasamy D, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Brevibacterium senegalense sp. nov. Stand Genomic Sci. 2012;7(2):233-45.spa
dc.relation.referencesKumar A, Agah I, Katı A, Chakraborty R. Brevibacterium siliguriense sp . nov ., a facultatively oligotrophic bacterium isolated from river water. 2013;511-5.spa
dc.relation.referencesAnast JM, Dzieciol M, Schultz DL, Wagner M, Mann E, Schmitz-Esser S. Brevibacterium from Austrian hard cheese harbor a putative histamine catabolism pathway and a plasmid for adaptation to the cheese environment. Sci Rep [Internet]. 2019;9(1):1-12. Disponible en: http://dx.doi.org/10.1038/s41598-019-42525-yspa
dc.relation.referencesHohmann HP, Stahmann KP. Biotechnology of riboflavin production. Compr Nat Prod II Chem Biol. 2010;7:115-39.spa
dc.relation.referencesWalter F, Albersmeier A, Kalinowski J, Rückert C. Complete genome sequence of Corynebacterium casei LMG S-19264 T ( = DSM 44701 T ), isolated from a smear-ripened cheese. J Biotechnol [Internet]. 2014;189:76-7. Disponible en: http://dx.doi.org/10.1016/j.jbiotec.2014.08.038spa
dc.relation.referencesAl-Dilaimi A, Bednarz H, Lömker A, Niehaus K, Kalinowski J, Rückert C. Revisiting Corynebacterium glyciniphilum (ex Kubota et al., 1972) sp. nov., nom. rev., isolated from putrefied banana. Int J Syst Evol Microbiol. 2015;65(1):177-82.spa
dc.relation.referencesRuiz-Aguilar GML. Biodegradación de Bifenilos Policlorados (BPCs) por Microorganismos. Acta Univ. 2005;15(2):19-28.spa
dc.relation.referencesSchröder J, Maus I, Trost E, Tauch A. Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics [Internet]. 2011;12(1):545. Disponible en: http://www.biomedcentral.com/1471-2164/12/545spa
dc.relation.referencesCrovadore J, Calmin G, Chablais R, Cochard B. Whole-Genome Sequence of. 2016;4(4):4-5.spa
dc.relation.referencesKhan N, Yılmaz S, Aksoy S, Uzel A, Tosun Ç, Kirmizibayrak PB, et al. Polyethers isolated from the marine actinobacterium Streptomyces cacaoi inhibit autophagy and induce apoptosis in cancer cells. Chem Biol Interact. 2019;307(February):167-78.spa
dc.relation.referencesJin D, Kong X, Jia M, Yu X, Wang X, Zhuang X, et al. Gordonia phthalatica sp. nov., a di-n-butyl phthalate-degrading bacterium isolated from activated sludge. Int J Syst Evol Microbiol. 2017;67(12):5128-33.spa
dc.relation.referencesSu X, Liu Y, Hashmi MZ, Hu J, Ding L, Wu M, et al. Rhodococcus biphenylivorans sp. nov., a polychlorinated biphenyl-degrading bacterium. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 2015;107(1):55-63.spa
dc.relation.referencesWicke C, Hüners M, Wray V, Nimtz M, Bilitewski U, Lang S. Production and structure elucidation of glycoglycerolipids from a marine sponge-associated Microbacterium species. J Nat Prod. 2000;63(5):621-6.spa
dc.relation.referencesIbrahim AH, Desoukey SY, Fouad MA, Kamel MS, Gulder TAM, Abdelmohsen UR. Natural product potential of the genus nocardiopsis. Mar Drugs. 2018;16(5):1-12.spa
dc.relation.referencesKhopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination [Internet]. 2012;285:198-spa
dc.relation.referencesDisponible en: http://dx.doi.org/10.1016/j.desal.2011.10.002spa
dc.relation.referencesBennur T, Kumar AR, Zinjarde S, Javdekar V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol Res [Internet]. 2015;174:33-47. Disponible en: http://dx.doi.org/10.1016/j.micres.2015.03.010spa
dc.relation.referencesShutsrirung A, Chromkaew Y, Pathom-Aree W, Choonluchanon S, Boonkerd N. Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth promoting activity. Soil Sci Plant Nutr. 2013;59(3):322- 30.spa
dc.relation.referencesParkes RJ, Sass H. Deep Sub-Surface. Encycl Microbiol. 2009;64-79.spa
dc.relation.referencesStojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1-16.spa
dc.relation.referencesHashmi I, Bindschedler S, Junier P. Firmicutes. Beneficial Microbes in Agro-Ecology. 2020. 363- 396 p.spa
dc.relation.referencesWadud S, Michaelsen A, Gallagher E, Parcsi G, Zemb O, Stuetz R, et al. Bacterial and fungal community composition over time in chicken litter with high or low moisture content. Br Poult Sci. 2014;53(5):561-9.spa
dc.relation.referencesShewmaker PL, Steigerwalt AG, Morey RE, Carvalho M da GS, Elliot JA, Joyce K, et al. Vagococcus carniphilus sp. nov., isolated from ground beef. Int J Syst Evol Microbiol. 2004;54(5):1505-10.spa
dc.relation.referencesLam MQ, Nik Mut NN, Thevarajoo S, Chen SJ, Selvaratnam C, Hussin H, et al. Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech [Internet]. 2018;8(2):1-9. Disponible en: https://doi.org/10.1007/s13205-018-1133-2spa
dc.relation.referencesNigam PS. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules. 2013;3(3):597-611.spa
dc.relation.referencesWhitehead et al. Atopostipes. Man Bergey’s. 2015;spa
dc.relation.referencesSharma P, Dutta J, Thakur D. Future Prospects of Actinobacteria in Health and Industry [Internet]. New and Future Developments in Microbial Biotechnology and Bioengineering: Actinobacteria: Diversity and Biotechnological Applications. Elsevier B.V.; 2018. 305-324 p. Disponible en: http://dx.doi.org/10.1016/B978-0-444-63994-3.00021-7spa
dc.relation.referencesBagher M, Nobandegani J, Saud HM, Yun WM. Phylogenetic Relationship of Phosphate Solubilizing Bacteria according to 16S rRNA Genes. 2015;2015.spa
dc.relation.referencesOthoum G, Bougouffa S, Bokhari A, Lafi FF, Gojobori T, Hirt H, et al. Mining biosynthetic gene clusters in Virgibacillus genomes. BMC Genomics. 2019;20(1):1-10.spa
dc.relation.referencesKersters K, Vos PDE, Gillis M, Swings J, Vandamme P. Introduct i on to the Proteobacter i a. 2006. 3-37 p.spa
dc.relation.referencesWilliams KP, Gillespie JJ, Sobral BWS, Nordberg EK, Snyder EE, Shallom JM, et al. Phylogeny of gammaproteobacteria. J Bacteriol. 2010;192(9):2305-14.spa
dc.relation.referencesDworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. The prokaryotes. Vol. 7. Proteobacteria : delta and epsilon subclasses, deeply rooting bacteria : a handbook on the biology of bacteria. 2006. 408 p.spa
dc.relation.referencesBowman. The genus Psychrobacter. B prokaryotes. 2006;42(1):44-57.spa
dc.relation.referencesCamardella L, Di R, Antignani A, Ciardiello MA, Coleman JK, Buchon L, et al. The Antarctic Psychrobacter sp . TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities . Characterisation of the NAD q -dependent enzyme. 2002;131:559-67.spa
dc.relation.referencesNara S, Kandpal R, Jaiswal V, Augustine S, Wahie S, Sharma JG, et al. Exploring Providencia rettgeri for application to eco-friendly paper based microbial fuel cell. Biosens Bioelectron [Internet]. 2020;165:112323. Disponible en: https://doi.org/10.1016/j.bios.2020.112323spa
dc.relation.referencesVieira VR, Pinheiro V, Borsoi A, Ruschel L. Número mais provável ( NMP ) de Salmonella sp . em cecos de frangos de corte e correlação com a população linfocitária bursal *. 2007;35(December 2006):49-53.spa
dc.relation.referencesGuerfali MM, Djobbi W, Charaabi K, Hamden H, Fadhl S, Marzouki W, et al. Evaluation of Providencia rettgeri pathogenicity against laboratory Mediterranean fruit fly strain (Ceratitis capitata). PLoS One. 2018;13(5):1-18.spa
dc.relation.referencesXu B, Sun QJ, Lan JCW, Chen WM, Hsueh CC, Chen BY. Exploring the glyphosate-degrading characteristics of a newly isolated, highly adapted indigenous bacterial strain, Providencia rettgeri GDB 1. J Biosci Bioeng [Internet]. 2019;128(1):80-7. Disponible en: https://doi.org/10.1016/j.jbiosc.2019.01.012spa
dc.relation.referencesRattanasuk S, Songsaeng A, Sriwarom T. Pseudomonas stutzeri cm1, novel thermotolerant cellulase-producing bacteria isolated from forest soil. Pakistan J Biol Sci. 2020;23(10):1345-50.spa
dc.relation.referencesLarsbrink J, McKee LS. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility [Internet]. 1.a ed. Vol. 110, Advances in Applied Microbiology. Elsevier Inc.; 2019. 63-98 p. Disponible en: http://dx.doi.org/10.1016/bs.aambs.2019.11.001spa
dc.relation.referencesMoran NA, Tran P, Gerardo NM, Moran NA, Tran P, Gerardo NM. Symbiosis and Insect Diversification : an Ancient Symbiont of Sap-Feeding Insects from the Bacterial Phylum Bacteroidetes Symbiosis and Insect Diversification : an Ancient Symbiont of Sap-Feeding Insects from the Bacterial Phylum Bacteroidetes. 2005;71(12).spa
dc.relation.referencesShivaji S, Chaturvedi P, Reddy GSN, Suresh K. Pedobacter himalayensis sp. nov., from the Hamta glacier located in the Himalayan mountain ranges of India. Int J Syst Evol Microbiol. 2005;55(3):1083-8.spa
dc.relation.referencesSong M, Jiang L, Zhang D, Luo C, Yin H, Li Y, et al. Identification of biphenyl-metabolising microbes in activated biosludge using cultivation-independent and -dependent approaches. J Hazard Mater [Internet]. 2018;353(2010):534-41. Disponible en: https://doi.org/10.1016/j.jhazmat.2018.04.028spa
dc.relation.referencesMoral S, Ramírez-coutiño LP, García-gómez MDJ. Aspectos relevantes del uso de enzimas en la industria de los alimentos. Rev Iberoam Ciencias. 2015;2(3):87-102spa
dc.relation.referencesPérez SA, Niño ZM, Hernández V, Hernández C. Uso de enzimas de tipo ureasa en el tratamiento de aguas residuales con alto contenido en nitrógeno orgánico. Inf Tecnol. 2007;18(5):41-8.spa
dc.relation.referencesLiu Y, Dyall-Smith M, Marenda M, Hu H-W, Browning G, Billman-Jacobe H. Antibiotic Resistance Genes in Antibiotic-Free Chicken Farms. Antibiotics. 2020;9(3):120.spa
dc.relation.referencesDonado-godoy P, Byrne BA, León M, Castellanos R, Vanegas C, Coral A, et al. Prevalence, resistance patterns, and risk factors for antimicrobial resistance in bacteria from retail chicken meat in Colombia. J Food Prot. 2015;78(4):751-9.spa
dc.relation.referencesPoudel A, Kang Y, Mandal RK, Kalalah A, Butaye P, Hathcock T, et al. Comparison of microbiota, antimicrobial resistance genes and mobile genetic elements in flies and the feces of sympatric animals. FEMS Microbiol Ecol. 2020;96(4):1-13.spa
dc.relation.referencesFranz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol [Internet]. 2011;151(2):125-40. Disponible en: http://dx.doi.org/10.1016/j.ijfoodmicro.2011.08.014spa
dc.relation.referencesOsman KM, Badr J, Orabi A, Elbehiry A, Saad A, Ibrahim MDS, et al. Poultry as a vector for emerging multidrug resistant Enterococcus spp.: First report of vancomycin (van) and the chloramphenicol–florfenicol (cat-fex-cfr) resistance genes from pigeon and duck faeces. Microb Pathog [Internet]. 2019;128:195-205. Disponible en: https://doi.org/10.1016/j.micpath.2019.01.006spa
dc.relation.referencesEthèves MA, Choisis N, Alvarez S, Dalleau F, Hascoat J, Gallard V, et al. Risk factors for Salmonella enterica subsp. enterica persistence in broiler-chicken flocks on Reunion Island. Heliyon. 2021;7(3).spa
dc.relation.referencesVelázquez. ESCUELA SUPERIOR POLITÉCNICA AGROPECUARIA DE MANABÍ MANUEL FÉLIX LÓPEZ Tema : 2012;1-103.spa
dc.relation.referencesGarcía B, Instituto D, Animal DC. Síndrome de Mala Absorción en aves - Malabsorption síndrome in poultry. Redvet. 2010;11(12):165-72.spa
dc.relation.referencesFernández-Olmos A, García C, Sáez-Nieto JA, Valdezate S. Métodos de identificación bacteriana en el laboratorio de microbiología. Vol. 29, Enfermedades Infecciosas y Microbiologia Clinica. 2011. 601-608 p.spa
dc.relation.referencesWynants E, Frooninckx L, Van Miert S, Geeraerd A, Claes J, Van Campenhout L. Risks related to the presence of Salmonella sp. during rearing of mealworms (Tenebrio molitor) for food or feed: Survival in the substrate and transmission to the larvae. Food Control [Internet]. 2019;100:227-34. Disponible en: https://doi.org/10.1016/j.foodcont.2019.01.026spa
dc.relation.referencesMessens W, Hugas M, Afonso A, Aguilera J, Berendonk TU, Carattoli A, et al. Advancing biological hazards risk assessment. EFSA J. 2019;17(S1):1-10.spa
dc.relation.referencesAbd El-Aziz NK, Tartor YH, Gharieb RMA, Erfan AM, Khalifa E, Said MA, et al. Extensive Drug- Resistant Salmonella enterica Isolated From Poultry and Humans: Prevalence and Molecular Determinants Behind the Co-resistance to Ciprofloxacin and Tigecycline. Front Microbiol. 2021;12(November).spa
dc.relation.referencesPérez de Rosas AM. Utilización de cepas de Bacteroides spp. como probiótico en conejos. 2014;1-181.spa
dc.relation.referencesGarcia Alonso A. Trabajo fin de Grado: Microbiota intestinal y diabetes. 2017;1-20. Disponible en: https://eprints.ucm.es/51326/1/ANTONIO BELTRAN MARTIN.pdfspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalAlphitobius diaperinusspa
dc.subject.proposalMicrobioma de artrópodosspa
dc.subject.proposalBioprospecciónspa
dc.subject.proposalMetagenómicaspa
dc.subject.proposalGenes de resistenciaspa
dc.subject.proposalVector de ARGspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024