dc.contributor.advisor | Posada Buitrago, Martha Lucía | |
dc.contributor.advisor | Vargas Duarte, Jimmy Jolman | |
dc.contributor.author | Torres Valderrama, Claudia Patricia | |
dc.date.accessioned | 2024-05-22T21:11:37Z | |
dc.date.available | 2024-05-22T21:11:37Z | |
dc.date.issued | 2022-02 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6903 | |
dc.description.abstract | Son varios los factores que afectan la salud de las aves en la producción avícola, sin embargo, se ha dedicado poca atención a los artrópodos que pueden actuar como posibles vectores de enfermedad, siendo el actor principal Alphitobius diaperinus. En respuesta a esta problemática, de lo que representa este artrópodo en avicultura, se plantearon dos enfoques: el primero basado en metagenómica por secuenciación no dirigida o shotgun, en el que se secuenció todo el material genómico y se realizó el correspondiente análisis bioinformático, que permitió conocer la diversidad y la abundancia de las comunidades microbianas; y el segundo, la determinación de las especies con potencial biotecnológico y de los posibles genes de resistencia antimicrobianos en las especies con riesgo de patogenicidad identificadas en el estudio.
Este trabajo amplía el conocimiento sobre la comunidad microbiana de A. diaperinus en relación a su potencial en bioprospección, plantear una alerta a la comunidad médica, y los avicultores de los riesgos por la posible transferencia de genes de resistencia a los antibióticos. Además se proponen recomendaciones a los avicultores en relación al biomanejo de este artrópodo. | spa |
dc.description.abstract | There are several factors that affect the health of birds in poultry production, however, little attention has been devoted to arthropods that can act as possible vectors of disease, the main actor being Alphitobius diaperinus. In response to this problem, of what this arthropod represents in poultry farming, two approaches were proposed: the first based on metagenomics by non- directed sequencing or shotgun, in which all the genomic material was sequenced and bioinformatic analysis was carried out, which allowed knowing the diversity and abundance of microbial communities; and the second, the determination of the species with biotechnological potential and the possible antimicrobial resistance genes in the species with risk of pathogenicity identified in the study.
This work expands the knowledge about the microbial community of A. diaperinus in relation to its potential in bioprospecting, raising an alert to the medical community, and poultry farmers of the risks due to the possible transfer of antibiotic resistance genes. In addition, recommendations are proposed to poultry farmers in relation to the biomanagement of this arthropod. | eng |
dc.description.tableofcontents | Contenido
1. Introducción 13
2. Objetivos 15
2.1 Objetivo general 15
2.2 Objetivos específicos 15
3. MARCO CONCEPTUAL Y GENERALIDADES 16
3.1 Alphitobius diaperinus 16
3.2 Diversidad del microbioma de los escarabajos 17
3.3 Alphitobius diaperinus como vector de enfermedades avícolas18
3.4 Vectores como portadores de bacterias y de genes de resistencia20
3.4.1 Genes de resistencia en pollos de engorde y su difusión en granjas avícolas21
3.4.2 Implicaciones de la resistencia antimicrobiana (AMR) en salud pública23
3.5 Metagenómica 26
3.6 ARG y metagenómica 31
3.7 Aplicación de metagenómica al estudio de artrópodos 31
4. DESARROLLO EXPERIMENTAL 33
4.1 MATERIALES Y MÉTODOS 33
4.1.1 Recolección y procesamiento de muestras de adultos del artrópodo Alphitobius diaperinus 34
4.1.2 Procesamiento de muestras de adultos del artrópodo Alphitobius diaperinus34
4.2 Extracción de ADN de las muestras de Alphitobius diaperinus 35
4.2.1 Maceración de las muestras en mortero con nitrógeno líquido 36
4.2.2 Verificación de calidad de ADN par secuenciación 37
4.3 Secuenciación de ADN 38
4.4 Análisis bioinformático 38
5. RESULTADOS Y DISCUSIÓN 39
5.1 EXTRACCIÓN Y CUANTIFICACIÓN DE ADN DE Alphitobius diaperinus
5.2 Ensayo de PCR convencional 39
5.3 Resultados de la secuenciación y análisis 41
5.3.1 Análisis bioinformático42
5.4 Bacterias identificadas en el microbioma de adultos de Alphitobius diaperinus 44
5.4.1 Actinobacteria 51
5.4.2 Firmicutes 54
5.4.3 Proteobacterias 56
5.4.4 Bacteroidetes 59
5.4.5 Bacterias patógenas identificadas en adultos de A. diaperinus 60
5.5 Hongos identificados en adultos de A. diaperinus …72
5.5.1 Ascomycota73
5.5.2 Mucoromycota 76
5.6 Virus …78
5.7 Relación con otros estudios …79
6. Recomendaciones para futuros estudios 85
7. Conclusiones 87
8. Referencias Bibliográficas 89
Anexos 120 | spa |
dc.format.extent | 130p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | Estudio del microbioma de Alphitobius diaperinus recolectado en una granja avícola mediante una aproximación metagenómica. | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.contributor.corporatename | Universidad Colegio Mayor de Cundinamarca | spa |
dc.contributor.researchgroup | CEPARIUM | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Microbiología | spa |
dc.description.researcharea | Agroambiental | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá D.C., Colombia | spa |
dc.publisher.program | Maestría en Microbiología | spa |
dc.relation.references | Moreno Gonzalo (FENAVI). avicultores 2019 cuales seran las perspectivas para la avicultura. avicultores. 2019;268. | spa |
dc.relation.references | Moreno Gonzalo (FENAVI). 2021, un año de grandes retos. Avicultores [Internet]. 2021;286:52. Disponible en: https://fenavi.org/wp-content/uploads/2019/09/revista-274.pdf | spa |
dc.relation.references | Cecco C, Franceschi D. Determination of growth stages of Alphitobius diaperinus in broiler chickens farm Resumen Resumen Resumen Resumen. Rev Argentina Prod Anim. 2005;25:93-9. | spa |
dc.relation.references | Nhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial resistance in bacterial poultry pathogens: A review. Front Vet Sci. 2017;4(AUG):1-17. | spa |
dc.relation.references | Osimani A, Milanović V, Cardinali F, Garofalo C, Clementi F, Ruschioni S, et al. Distribution of transferable antibiotic resistance genes in laboratory-reared edible mealworms (Tenebrio molitor L.). Front Microbiol. 19 de noviembre de 2018;9(NOV). | spa |
dc.relation.references | Crippen TL. PT. Conjugative Transfer of Plasmid-Located Antibiotic Resistance Genes Within the Gastrointestinal Tract. 2009;6(7). | spa |
dc.relation.references | Esquivel JF, Crippen TL, Ward LA. Improved visualization of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae)-Part I: Morphological features for sex determination of multiple stadia. Psyche (London). 2012;2012 | spa |
dc.relation.references | Trevor Lambkin. Darkling Beetles. 2006; | spa |
dc.relation.references | Vergara C, Gazani R. Biología de Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Vol. 39, Revista Peruana de Entomología. 1996. p. 1-5. | spa |
dc.relation.references | Dunford JC, Kaufman PE. Lesser Mealworm , Litter Beetle , Alphitobius diaperinus ( Panzer ) ( Insecta : Coleoptera : Tenebrionidae ) 1. 2007;(February):1-10. | spa |
dc.relation.references | Kolasa M, Ścibior R, Mazur MA, Kubisz D, Dudek K, Kajtoch Ł. How Hosts Taxonomy, Trophy, and Endosymbionts Shape Microbiome Diversity in Beetles. Microb Ecol. 2019;78(4):995-1013. | spa |
dc.relation.references | Kaczmarczyk-Ziemba et al. First Insight into Microbiome Profiles of Myrmecophilous Beetles and Their Host , Red Wood. MDPI journal}. 2020;1-19. | spa |
dc.relation.references | Kajtoch Ł, Kolasa M, Kubisz D, Gutowski JM, Ścibior R, Mazur MA, et al. Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles. Sci Rep. 2019;9(1):1-15. | spa |
dc.relation.references | Silver A, Perez S, Gee M, Xu B, Garg S, Will K. Persistence of the ground beetle ( Coleoptera : Carabidae ) microbiome to diet manipulation. 2020; | spa |
dc.relation.references | Wan. Divergence in Gut Bacterial Community Structure between Male and Female Stag Beetles Odontolabis. MDPI. 2020;1-10. | spa |
dc.relation.references | Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. 2013;37:699-735. | spa |
dc.relation.references | Leffer AM, Kuttel J, Martins LM, Pedroso AC, Astolfi-Ferreira CS, Ferreira F, et al. Vectorial competence of larvae and adults of alphitobius diaperinus in the transmission of salmonella enteritidis in poultry. Vector-Borne Zoonotic Dis. 2010;10(5):481-7. | spa |
dc.relation.references | Tschinkel WR. A comparative study of the chemical defensive system of tenebrionid beetles III. Morphology of the glands. J Morphol. 1975;145(3):355-70. | spa |
dc.relation.references | Retamales J, Vivallo F, Robeson J. Insects associated with chicken manure in a breeder poultry farm of Central Chile Insectos asociados a fecas de pollo en una avícola de Chile Central. Arch Med Vet. 2011;43:79-83. | spa |
dc.relation.references | Casas ED Las, Harein PK, Deshmukh DR, Pomeroy BS. The Relationship Between the Lesser Mealworm 1 and Avian Viruses. 1. Reovirus 24 2. Environ Entomol. 1973;2(6):1043-7. | spa |
dc.relation.references | McAllister JC, Steelman CD, Skeeles JK, Newberry LA, Gbur EE. Reservoir Competence of Alphitobius diaperinus (Coleoptera: Tenebrionidae) for Escherichia coli (Eubacteriales: Enterobacteriaceae). J Med Entomol. 1996;33(6):983-7. | spa |
dc.relation.references | Strother KO, Dayton Steelman C, Gbur EE. Reservoir competence of lesser mealworm (Coleoptera: Tenebrionidae) for Campylobacter jejuni (Campylobacterales: Campylobacteraceae). J Med Entomol. 2005;42(1):42-7. | spa |
dc.relation.references | Hakeem MJ, Lu X. Survival and Control of Campylobacter in Poultry Production Environment. Front Cell Infect Microbiol. 2021;10(January):1-18. | spa |
dc.relation.references | Goodwin MA, Waltman WD. Transmission of Eimeria, viruses, and bacteria to chicks: Darkling beetles (alphitobius diaperinus) as vectors of pathogens. J Appl Poult Res. 1996;5(1):51-5. | spa |
dc.relation.references | Huber K, Gouilloud L, Zenner L. A preliminary study of natural and experimental infection of the lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae) with Histomonas meleagridis (Protozoa: Sarcomastigophora). Avian Pathol. 2007;36(4):279-82. | spa |
dc.relation.references | Roche AJ, Cox NA, Richardson LJ, Buhr RJ, Cason JA, Fairchild BD, et al. Transmission of Salmonella to broilers by contaminated larval and adult lesser mealworms, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Poult Sci. 2009;88(1):44-8. | spa |
dc.relation.references | Crippen TL, Zheng L, Sheffield CL, Tomberlin JK, Beier RC, Yu Z. Transient gut retention and persistence of Salmonella through metamorphosis in the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). J Appl Microbiol. 2012;112(5):920-6. | spa |
dc.relation.references | Akter S, Sabuj AAM, Haque ZF, Rahman MT, Kafi MA, Saha S. Detection of antibiotic-resistant bacteria and their resistance genes from houseflies. Vet World. 2020;13(2):266-74. | spa |
dc.relation.references | Ahmad A, Ghosh A, Schal C, Zurek L. Insects in confined swine operations carry a large antibiotic resistant and potentially virulent enterococcal community. BMC Microbiol [Internet]. 26 de enero de 2011 [citado 18 de febrero de 2020];11(1):23. Disponible en: http://bmcmicrobiol.biomedcentral.com/articles/10.1186/1471-2180-11-23 | spa |
dc.relation.references | Zurek L, Gorham JR. Insects As Vectors Of Foodborne Pathogens. Wiley Handb Sci Technol Homel Secur. 2008;1-15. | spa |
dc.relation.references | Zurek L, Ghosh A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Vol. 80, Applied and Environmental Microbiology. American Society for Microbiology; 2014. p. 3562-7. | spa |
dc.relation.references | Neupane S, White K, Thomson JL, Zurek L. Environmental and Sex E ff ects on Bacterial Carriage. Insect. 2020; | spa |
dc.relation.references | Pai HH. Multidrug resistant bacteria isolated from cockroaches inPai, H. H. (2013). Multidrug resistant bacteria isolated from cockroaches in long-term care facilities and nursing homes. Acta Tropica, 125(1), 18-22. https://doi.org/10.1016/j.actatropica.2012.08.0.
Acta Trop [Internet]. 2013;125(1):18-22. Disponible en: http://dx.doi.org/10.1016/j.actatropica.2012.08.016 | spa |
dc.relation.references | Moges F, Eshetie S, Endris M, Huruy K, Muluye D, Feleke T, et al. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia. Biomed Res Int. 2016;2016(January). | spa |
dc.relation.references | Jensen LB, Frimodt-Møller N, Aarestrup FM. Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol Lett. 1999;170(1):151-8. | spa |
dc.relation.references | Channaiah LH, Subramanyam B, McKinney LJ, Zurek L. Stored-product insects carryantibiotic- resistant and potentially virulent enterococci. FEMS Microbiol Ecol. 2010;74(2):464-71. | spa |
dc.relation.references | Garces Leah. Reemplazar la carne de res con pollo no es tan bueno para el planeta como crees - Vox [Internet]. Vox. 2019 [citado 3 de abril de 2020]. Disponible en: https://www.vox.com/future-perfect/2019/12/4/20993654/chicken-beef-climate-environment- factory-farms | spa |
dc.relation.references | Blaak H, Van Hoek AHAM, Hamidjaja RA, Van Der Plaats RQJ, Kerkhof-De Heer L, De Roda Husman AM, et al. Distribution, numbers, and diversity of ESBL-producing E. coli in the poultry farm environment. PLoS One. 2015;10(8):1-23. | spa |
dc.relation.references | Hayashi W, Ohsaki Y, Taniguchi Y, Koide S, Kawamura K, Suzuki M, et al. High prevalence of blaCTX-M-14 among genetically diverse Escherichia coli recovered from retail raw chicken meat portions in Japan. Int J Food Microbiol [Internet]. 2018;284(March):98-104. Disponible en: https://doi.org/10.1016/j.ijfoodmicro.2018.08.003 | spa |
dc.relation.references | Leverstein-van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, van den Munckhof MP, van Essen-Zandbergen A, et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect [Internet]. 2011;17(6):873-80. Disponible en: http://dx.doi.org/10.1111/j.1469-0691.2011.03497.x | spa |
dc.relation.references | Vogt D, Overesch G, Endimiani A, Collaud A, Thomann A, Perreten V. Occurrence and genetic characteristics of third-generation cephalosporin-resistant Escherichia coli in Swiss retail meat. Microb Drug Resist. 2014;20(5):485-94 | spa |
dc.relation.references | Falgenhauer L, Imirzalioglu C, Oppong K, Akenten CW, Hogan B, Krumkamp R, et al. Detection and characterization of ESBL-producing Escherichia coli from humans and poultry in Ghana. Front Microbiol. 2019;10(JAN):1-8. | spa |
dc.relation.references | Yang Y, Ashworth AJ, Willett C, Cook K, Upadhyay A, Owens PR, et al. Review of Antibiotic Resistance, Ecology, Dissemination, and Mitigation in U.S. Broiler Poultry Systems. Front Microbiol. 2019;10(November):1-10. | spa |
dc.relation.references | Armbruster WJ, Roberts T. Food Safety Economics. Food Saf Econ. 2018;293-322. | spa |
dc.relation.references | Amann S, Neef K, Kohl S. Antimicrobial resistance (AMR). Eur J Hosp Pharm . 2019;26(3):175-7. | spa |
dc.relation.references | He yin LIang. Dissemination of Antibiotic Resistance Genes in Representative Broiler Feedlots Environments: Identification of Indicator ARGs and Correlations with Environmental Variables. 2014;(8620). | spa |
dc.relation.references | Wallmann J, Schröter K, Wieler LH, Kroker R. National antibiotic resistance monitoring in veterinary pathogens from sick food-producing animals: The German programme and results from the 2001 pilot study. Int J Antimicrob Agents. 2003;22(4):420-8. | spa |
dc.relation.references | Garofalo C, Osimani A, Milanović V, Taccari M, Cardinali F, Aquilanti L, et al. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol [Internet]. 2017;62:15-22. Disponible en: http://dx.doi.org/10.1016/j.fm.2016.09.012 | spa |
dc.relation.references | Septimus EJ. Antimicrobial Resistance: An Antimicrobial/Diagnostic Stewardship and Infection Prevention Approach. Vol. 102, Medical Clinics of North America. 2018. p. 819-29. | spa |
dc.relation.references | McEwen SA, Collignon PJ. Antimicrobial Resistance: a One Health Perspective. Microbiol Spectr. 2018;6(2). | spa |
dc.relation.references | Snneringer Stacy, McDonald James KNMBW. MK. Economics of Antibiotic Use in U . S . Swine and Poultry Production. Choices [Internet]. 2015;30(1):1-11. Disponible en: http://ageconsearch.umn.edu/bitstream/197166/2/cmsarticle_404.pdf%5Cnhttp://www.choice smagazine.org/choices-magazine/theme-articles/theme-overview/economics-of-antibiotic-use- in-us-swine-and-poultry-production | spa |
dc.relation.references | Sarmah AK, Meyer MT, Boxall ABA. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 2006;65(5):725-59. | spa |
dc.relation.references | Li Dan. Water Disinfection Byproducts Induce Antibiotic ResistanceRole of Environmental Pollutants in Resistance Phenomena. Env Sci Tecnol. 2016;176(1):139-48. | spa |
dc.relation.references | Neill JO’. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations The Review on Antimicrobial Resistance Chaired. 2014;(December). | spa |
dc.relation.references | de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016;13(11):1-6. | spa |
dc.relation.references | Tang KL, Caffrey NP, Nóbrega DB, Cork SC, Ronksley PE, Barkema HW, et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food- producing animals and human beings: a systematic review and meta-analysis. Lancet Planet Heal. 2017;1(8):e316-27 | spa |
dc.relation.references | Góchez D, Raicek M, Ferreira JP, Jeannin M, Moulin G, Erlacher-Vindel E. OIE annual report on antimicrobial agents intended for use in animals: Methods used. Front Vet Sci. 2019;6(SEP). | spa |
dc.relation.references | Rivera I and. No TitleMetagenomics for microbiology. 2015. | spa |
dc.relation.references | Uribe Vélez D. Metagenómica ¿Una oportunidad para el estudio de la diversidad microbiana en Colombia? Rev Colomb Biotecnol. 2009;XI(2):4-7. | spa |
dc.relation.references | Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chem Biol. 1998;5(10). | spa |
dc.relation.references | Woese C et al. Bacterial evolution. Can J Microbiol. 1988;34(4):547-51. | spa |
dc.relation.references | Pace NR, Stahl DA, Lane DJ, Olsen GJ. The Analysis of Natural Microbial Populations by Ribosomal RNA Sequences. 1986;1-55. | spa |
dc.relation.references | Handelsman J. Metagenomics: Application of Genomics to Uncultured Microorganisms. Microbiol Mol Biol Rev. 2004;69(1):195-195. | spa |
dc.relation.references | Roumpeka DD, Wallace RJ, Escalettes F, Fotheringham I, Watson M. A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Front Genet. 2017;8(MAR):1-10. | spa |
dc.relation.references | Valenzuela-González F, Casillas-Hernández R, Villalpando E, Vargas-Albores F. El Gen aRNR 16s en el estudio de comunidades microbianas marinas. Ciencias Mar. 2015;41(4):297-313. | spa |
dc.relation.references | Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A. 2012;109(16):6241-6. | spa |
dc.relation.references | Pérez-Cobas AE, Gomez-Valero L, Buchrieser C. Metagenomic approaches in microbial ecology: An update on whole-genome and marker gene sequencing analyses. Microb Genomics. 2020;6(8):1-22. | spa |
dc.relation.references | Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci. 2014;5(JUN):1-14. | spa |
dc.relation.references | DeLong EF. Oceans of Archaea. ASM News. 2003;69(10):503-11. | spa |
dc.relation.references | Maxam AM, Gilbert W. A new method for sequencing DNA. 1977;74(2):560-4. | spa |
dc.relation.references | Sanger F, Nicklen S, Coulson A. DNA sequencing with chain-terminating. Proc Natl Acad Sci USA. 1977;74(12):5463-7. | spa |
dc.relation.references | Mullis KB. The unusual origin of the polymerase chain reaction. Sci Am. 1990;262(4):56-65. | spa |
dc.relation.references | Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, et al. Fluoresence detection in automated DNA sequence analyses. Nature. 1986;321:674-9. | spa |
dc.relation.references | Schmidt TM, DeLong EF, Pace NR. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991;173(14):4371-8. | spa |
dc.relation.references | Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, et al. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A. 2002;99(22):14250-5. | spa |
dc.relation.references | Wicker T, Schlagenhauf E, Graner A, Close TJ, Keller B, Stein N. 454 sequencing put to the test using the complex genome of barley. 2006;11:1-11. | spa |
dc.relation.references | Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol. 2009;25(4):195-203. | spa |
dc.relation.references | Rhoads A, Au KF. PacBio Sequencing and Its Applications. Genomics, Proteomics Bioinforma [Internet]. 2015;13(5):278-89. Disponible en: http://dx.doi.org/10.1016/j.gpb.2015.08.002 | spa |
dc.relation.references | Bowden R, Davies RW, Heger A, Pagnamenta AT, Cesare M De, Oikkonen LE, et al. Sequencing of human genomes with nanopore technology. Nat Commun [Internet]. 2019;1-9. Disponible en: http://dx.doi.org/10.1038/s41467-019-09637-5 | spa |
dc.relation.references | Dijk V. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418-26. | spa |
dc.relation.references | Dijk EL Van, Jaszczyszyn Y, Thermes C. Library preparation methods for next-generation sequencing : Tone down the bias. Exp Cell Res [Internet]. 2014;322(1):12-20. Disponible en: http://dx.doi.org/10.1016/j.yexcr.2014.01.008 | spa |
dc.relation.references | Moreno-Indias, I., & Tinahones FJ. Metagenomics. En: Principles of Nutrigenetics and Nutrigenomics. 2019. | spa |
dc.relation.references | Bronner IF, Quail MA. Best Practices for Illumina Library. 2019;102:1-48. | spa |
dc.relation.references | Fakhrai-rad H, Pourmand N, Ronaghi M. Pyrosequencing ™ : An Accurate Detection Platform for Single Nucleotide Polymorphisms. 2002;485:479-85. | spa |
dc.relation.references | Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008;24(3):133-41. | spa |
dc.relation.references | Lahens NF, Ricciotti E, Smirnova O, Toorens E, Kim EJ, Baruzzo G, et al. A comparison of Illumina and Ion Torrent sequencing platforms in the context of differential gene expression. BMC Genomics. 2017;18(1):602. | spa |
dc.relation.references | Farage Dosantos D, Istvan P, Quirino BF. Functional Metagenomics as a Tool for Identification of New Antibiotic Resistance Genes from Natural Environments. Microb Ecol [Internet]. 2016; Disponible en: http://dx.doi.org/10.1007/s00248-016-0866-x | spa |
dc.relation.references | Berglund F, Österlund T, Boulund F, Marathe NP, Larsson DGJ, Kristiansson E. Identification and reconstruction of novel antibiotic resistance genes from metagenomes. Microbiome. 2019;7(1):1-14. | spa |
dc.relation.references | Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6(1):1-15. | spa |
dc.relation.references | Tan MP, Wong LL, Razali SA, Afiqah-Aleng N, Mohd Nor SA, Sung YY, et al. Applications of Next- Generation Sequencing Technologies and Computational Tools in Molecular Evolution and Aquatic Animals Conservation Studies: A Short Review. Evol Bioinforma. 2019;15. | spa |
dc.relation.references | Malacrino A. et al. Meta-Omics Tools in the World of Insect-Microorganism Interactions. 2018; | spa |
dc.relation.references | Grünwald S, Pilhofer M, Höll W. Microbial associations in gut systems of wood- and bark- inhabiting longhorned beetles [Coleoptera: Cerambycidae]. Syst Appl Microbiol. 2010;33(1):25- 34. | spa |
dc.relation.references | Mohammed WS, Ziganshina EE, Shagimardanova EI, Gogoleva NE, Ziganshin AM. Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae). Sci Rep. 2018;8(1):1-12. | spa |
dc.relation.references | Esposti MD, Romero EM. The functional microbiome of arthropods. 2017;1-26. | spa |
dc.relation.references | McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol [Internet]. 2016;17(1):1-18. Disponible en: http://dx.doi.org/10.1186/s13059-016-1088-8 | spa |
dc.relation.references | Andújar C, Arribas P, Motyka M, Bocek M, Bocak L, Linard B, et al. New mitochondrial genomes of 39 soil dwelling Coleoptera from metagenome sequencing. Mitochondrial DNA Part B Resour [Internet]. 2019;4(2):2447-50. Disponible en: https://doi.org/10.1080/23802359.2019.1637289 | spa |
dc.relation.references | Mason CJ, Campbell A, Scully ED, Hoover K. Bacterial and fungal midgut community dynamics and transmission between life stages in an invasive xylophage. Microb Ecol. 2018; | spa |
dc.relation.references | Pauchet Y, Wilkinson P, Chauhan R, Richard H. Diversity of Beetle Genes Encoding Novel Plant Cell Wall Degrading Enzymes. 2010;5(12). | spa |
dc.relation.references | Cucini C, Leo C, Vitale M, Frati F, Carapelli A, Nardi F. Bacterial and fungal diversity in the gut of polystyrene-fed Alphitobius diaperinus (Insecta: Coleoptera). Anim Gene [Internet]. 2020;17- 18(October):200109. Disponible en: https://doi.org/10.1016/j.angen.2020.200109 | spa |
dc.relation.references | Crippen TL, Sheffield C. External surface disinfection of the lesser mealworm (Coleoptera: Tenebrionidae). J Med Entomol. 2006;43(5):916-23. | spa |
dc.relation.references | Bancoadn. Programa de control de calidad de ácidos nucleicos. Banco Nacional de ADN Carlos III (Universidad de Salamanca). Banco ADN [Internet]. 2020;1-10. Disponible en: www.bancoadn.org | spa |
dc.relation.references | Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Res. 2016;26(12):1721-9. | spa |
dc.relation.references | Fatahi-bafghi M. Antibiotic resistance genes in the Actinobacteria phylum. 2019;(c). | spa |
dc.relation.references | Anandan et al. An intoduction to Actinobacteria. Intech [Internet]. 2016;13. Disponible en: file:///C:/Users/usuario/Desktop/ANANDAN 2016 Introduction actinobacteria.pdf | spa |
dc.relation.references | lewin et al. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Physiol Behav. 2016;176(1):139-48. | spa |
dc.relation.references | Latha S, Dhanasekaran D. Research Article Antibacterial and extracellular enzyme activities of gut actinobacteria isolated from Gallus gallus domesticus and Capra hircus. 2013;5(11):379-85. | spa |
dc.relation.references | Onraedt A, Soetaert W, Vandamme E. Industrial importance of the genus Brevibacterium. 2005;527-33. | spa |
dc.relation.references | Buczolits S, Busse HJ. Brachybacterium . Bergey’s Man Syst Archaea Bact. 2015;1-10. | spa |
dc.relation.references | Lehhmann; Neumann. Corynebacterium. Bergey’s Manual of Systematics of Archaea and Bacteria. 2010. 1-70 p. | spa |
dc.relation.references | Li J, Zhao GZ, Zhang YQ, Klenk HP, Pukall R, Qin S, et al. Dietzia schimae sp. nov. and Dietzia cercidiphylli sp. nov., from surface-sterilized plant tissues. Int J Syst Evol Microbiol. 2008;58(11):2549-54. | spa |
dc.relation.references | Crovadore J, Calmin G, Chablais R, Cochard B. Whole-Genome Sequence of Enteractinococcus helveticum sp. nov. Strain UASWS1574 Isolated from Industrial Used Waters. 2016;4(4):4-5. | spa |
dc.relation.references | Das L, Deb S, Das SK. Glutamicibacter mishrai sp . nov ., isolated from the coral Favia veroni from Andaman Sea. Arch Microbiol [Internet]. 2019;(0123456789). Disponible en: https://doi.org/10.1007/s00203-019-01783-0 | spa |
dc.relation.references | Jürgen. and Wieser M. Glutamicibacter. 2016; | spa |
dc.relation.references | Arenskötter M, Bröker D, Steinbüchel A. Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol. 2004;70(6):3195-204. | spa |
dc.relation.references | Lee SD. Labedella gwakjiensis gen. nov., sp. nov., a novel actinomycete of the family Microbacteriaceae. Int J Syst Evol Microbiol. 2007;57(11):2498-502 | spa |
dc.relation.references | Serrano JS. Identificación y diagnóstico de Actinomicetales patógenos. 2005. | spa |
dc.relation.references | Collins et al. Genus Species Subspecies Author Brachybacterium faecium Collins et al . 1988 Reclassification Status Type spezies Schefferle 6-10 Hazard group Author ( s ) Title Volume Page ( s ) Year Collins M . D ., J . Brown and D . Jones . bacterium from poultry deep. 1988; | spa |
dc.relation.references | Lapidus A, Pukall R, LaButtii K, Copeland A, del Rio TG, Nolan M, et al. Complete genome sequence of Brachybacterium faecium type strain (schefferle 6-10 T). Stand Genomic Sci.
2009;1(1):3-11. | spa |
dc.relation.references | Takeuchi M, Yokota A. Taxonomic Study of the Genus Brachybacterium : Proposal of. 1995;(13):160-8. | spa |
dc.relation.references | Ziganshina EE, Mohammed WS, Shagimardanova EI, Ziganshin AM. Draft genome sequence data and analysis of Brachybacterium sp. strain EE-P12 isolated from a laboratory-scale anaerobic reactor. Data Br [Internet]. 2018;21:2576-80. Disponible en: https://doi.org/10.1016/j.dib.2018.11.104 | spa |
dc.relation.references | Forquin M, Weimer BC. Brevibacterium. 2014;1. | spa |
dc.relation.references | Plociniczak T et al. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd , Zn , Cu Phytoextraction by White Mustard. 2016;7(February):1-10. | spa |
dc.relation.references | Bonavila Juan C, Michelena Bengoechea A, Zubeltzu Sese B, Goenaga Sánchez MÁ. Recurrent endocarditis due to Brevibacterium casei: case presentation and a review of the literature. Enferm Infecc Microbiol Clin. 2016;35(2):127-8. | spa |
dc.relation.references | Rodriguez H, Reveron I, Doria F, Costantini A, De Las Rivas B, Muňoz R, et al. Degradation of ochratoxin a by brevibacterium species. J Agric Food Chem. 2011;59(19):10755-60 | spa |
dc.relation.references | Elahi A, Rehman A. Comparative behavior of two gram positive Cr 6+ resistant bacterial strains Bacillus aerius S1 and Brevibacterium iodinum S2 under hexavalent chromium stress. Biotechnol Reports [Internet]. 2019;21(2018):e00307. Disponible en: https://doi.org/10.1016/j.btre.2019.e00307 | spa |
dc.relation.references | Schefferle HE. Coryneform Bacteria in Poultry Deep Litter. J Appl Bacteriol. 1966;29(1):147-60. | spa |
dc.relation.references | Kokcha S, Ramasamy D, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Brevibacterium senegalense sp. nov. Stand Genomic Sci. 2012;7(2):233-45. | spa |
dc.relation.references | Kumar A, Agah I, Katı A, Chakraborty R. Brevibacterium siliguriense sp . nov ., a facultatively oligotrophic bacterium isolated from river water. 2013;511-5. | spa |
dc.relation.references | Anast JM, Dzieciol M, Schultz DL, Wagner M, Mann E, Schmitz-Esser S. Brevibacterium from Austrian hard cheese harbor a putative histamine catabolism pathway and a plasmid for adaptation to the cheese environment. Sci Rep [Internet]. 2019;9(1):1-12. Disponible en: http://dx.doi.org/10.1038/s41598-019-42525-y | spa |
dc.relation.references | Hohmann HP, Stahmann KP. Biotechnology of riboflavin production. Compr Nat Prod II Chem Biol. 2010;7:115-39. | spa |
dc.relation.references | Walter F, Albersmeier A, Kalinowski J, Rückert C. Complete genome sequence of Corynebacterium casei LMG S-19264 T ( = DSM 44701 T ), isolated from a smear-ripened cheese. J Biotechnol [Internet]. 2014;189:76-7. Disponible en: http://dx.doi.org/10.1016/j.jbiotec.2014.08.038 | spa |
dc.relation.references | Al-Dilaimi A, Bednarz H, Lömker A, Niehaus K, Kalinowski J, Rückert C. Revisiting Corynebacterium glyciniphilum (ex Kubota et al., 1972) sp. nov., nom. rev., isolated from putrefied banana. Int J Syst Evol Microbiol. 2015;65(1):177-82. | spa |
dc.relation.references | Ruiz-Aguilar GML. Biodegradación de Bifenilos Policlorados (BPCs) por Microorganismos. Acta Univ. 2005;15(2):19-28. | spa |
dc.relation.references | Schröder J, Maus I, Trost E, Tauch A. Complete genome sequence of Corynebacterium
variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics [Internet]. 2011;12(1):545. Disponible en: http://www.biomedcentral.com/1471-2164/12/545 | spa |
dc.relation.references | Crovadore J, Calmin G, Chablais R, Cochard B. Whole-Genome Sequence of. 2016;4(4):4-5. | spa |
dc.relation.references | Khan N, Yılmaz S, Aksoy S, Uzel A, Tosun Ç, Kirmizibayrak PB, et al. Polyethers isolated from the marine actinobacterium Streptomyces cacaoi inhibit autophagy and induce apoptosis in cancer cells. Chem Biol Interact. 2019;307(February):167-78. | spa |
dc.relation.references | Jin D, Kong X, Jia M, Yu X, Wang X, Zhuang X, et al. Gordonia phthalatica sp. nov., a di-n-butyl phthalate-degrading bacterium isolated from activated sludge. Int J Syst Evol Microbiol. 2017;67(12):5128-33. | spa |
dc.relation.references | Su X, Liu Y, Hashmi MZ, Hu J, Ding L, Wu M, et al. Rhodococcus biphenylivorans sp. nov., a polychlorinated biphenyl-degrading bacterium. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 2015;107(1):55-63. | spa |
dc.relation.references | Wicke C, Hüners M, Wray V, Nimtz M, Bilitewski U, Lang S. Production and structure elucidation of glycoglycerolipids from a marine sponge-associated Microbacterium species. J Nat Prod. 2000;63(5):621-6. | spa |
dc.relation.references | Ibrahim AH, Desoukey SY, Fouad MA, Kamel MS, Gulder TAM, Abdelmohsen UR. Natural product potential of the genus nocardiopsis. Mar Drugs. 2018;16(5):1-12. | spa |
dc.relation.references | Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination [Internet]. 2012;285:198- | spa |
dc.relation.references | Disponible en: http://dx.doi.org/10.1016/j.desal.2011.10.002 | spa |
dc.relation.references | Bennur T, Kumar AR, Zinjarde S, Javdekar V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol Res [Internet]. 2015;174:33-47. Disponible en: http://dx.doi.org/10.1016/j.micres.2015.03.010 | spa |
dc.relation.references | Shutsrirung A, Chromkaew Y, Pathom-Aree W, Choonluchanon S, Boonkerd N. Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth promoting activity. Soil Sci Plant Nutr. 2013;59(3):322- 30. | spa |
dc.relation.references | Parkes RJ, Sass H. Deep Sub-Surface. Encycl Microbiol. 2009;64-79. | spa |
dc.relation.references | Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1-16. | spa |
dc.relation.references | Hashmi I, Bindschedler S, Junier P. Firmicutes. Beneficial Microbes in Agro-Ecology. 2020. 363- 396 p. | spa |
dc.relation.references | Wadud S, Michaelsen A, Gallagher E, Parcsi G, Zemb O, Stuetz R, et al. Bacterial and fungal community composition over time in chicken litter with high or low moisture content. Br Poult Sci. 2014;53(5):561-9. | spa |
dc.relation.references | Shewmaker PL, Steigerwalt AG, Morey RE, Carvalho M da GS, Elliot JA, Joyce K, et al. Vagococcus carniphilus sp. nov., isolated from ground beef. Int J Syst Evol Microbiol. 2004;54(5):1505-10. | spa |
dc.relation.references | Lam MQ, Nik Mut NN, Thevarajoo S, Chen SJ, Selvaratnam C, Hussin H, et al.
Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech [Internet]. 2018;8(2):1-9. Disponible en: https://doi.org/10.1007/s13205-018-1133-2 | spa |
dc.relation.references | Nigam PS. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules. 2013;3(3):597-611. | spa |
dc.relation.references | Whitehead et al. Atopostipes. Man Bergey’s. 2015; | spa |
dc.relation.references | Sharma P, Dutta J, Thakur D. Future Prospects of Actinobacteria in Health and Industry [Internet]. New and Future Developments in Microbial Biotechnology and Bioengineering: Actinobacteria: Diversity and Biotechnological Applications. Elsevier B.V.; 2018. 305-324 p. Disponible en: http://dx.doi.org/10.1016/B978-0-444-63994-3.00021-7 | spa |
dc.relation.references | Bagher M, Nobandegani J, Saud HM, Yun WM. Phylogenetic Relationship of Phosphate Solubilizing Bacteria according to 16S rRNA Genes. 2015;2015. | spa |
dc.relation.references | Othoum G, Bougouffa S, Bokhari A, Lafi FF, Gojobori T, Hirt H, et al. Mining biosynthetic gene clusters in Virgibacillus genomes. BMC Genomics. 2019;20(1):1-10. | spa |
dc.relation.references | Kersters K, Vos PDE, Gillis M, Swings J, Vandamme P. Introduct i on to the Proteobacter i a. 2006. 3-37 p. | spa |
dc.relation.references | Williams KP, Gillespie JJ, Sobral BWS, Nordberg EK, Snyder EE, Shallom JM, et al. Phylogeny of gammaproteobacteria. J Bacteriol. 2010;192(9):2305-14. | spa |
dc.relation.references | Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. The prokaryotes. Vol. 7. Proteobacteria : delta and epsilon subclasses, deeply rooting bacteria : a handbook on the biology of bacteria. 2006. 408 p. | spa |
dc.relation.references | Bowman. The genus Psychrobacter. B prokaryotes. 2006;42(1):44-57. | spa |
dc.relation.references | Camardella L, Di R, Antignani A, Ciardiello MA, Coleman JK, Buchon L, et al. The Antarctic Psychrobacter sp . TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities . Characterisation of the NAD q -dependent enzyme. 2002;131:559-67. | spa |
dc.relation.references | Nara S, Kandpal R, Jaiswal V, Augustine S, Wahie S, Sharma JG, et al. Exploring Providencia rettgeri for application to eco-friendly paper based microbial fuel cell. Biosens Bioelectron [Internet]. 2020;165:112323. Disponible en: https://doi.org/10.1016/j.bios.2020.112323 | spa |
dc.relation.references | Vieira VR, Pinheiro V, Borsoi A, Ruschel L. Número mais provável ( NMP ) de Salmonella sp . em cecos de frangos de corte e correlação com a população linfocitária bursal *. 2007;35(December 2006):49-53. | spa |
dc.relation.references | Guerfali MM, Djobbi W, Charaabi K, Hamden H, Fadhl S, Marzouki W, et al. Evaluation of Providencia rettgeri pathogenicity against laboratory Mediterranean fruit fly strain (Ceratitis capitata). PLoS One. 2018;13(5):1-18. | spa |
dc.relation.references | Xu B, Sun QJ, Lan JCW, Chen WM, Hsueh CC, Chen BY. Exploring the glyphosate-degrading characteristics of a newly isolated, highly adapted indigenous bacterial strain, Providencia rettgeri GDB 1. J Biosci Bioeng [Internet]. 2019;128(1):80-7. Disponible en: https://doi.org/10.1016/j.jbiosc.2019.01.012 | spa |
dc.relation.references | Rattanasuk S, Songsaeng A, Sriwarom T. Pseudomonas stutzeri cm1, novel thermotolerant cellulase-producing bacteria isolated from forest soil. Pakistan J Biol Sci. 2020;23(10):1345-50. | spa |
dc.relation.references | Larsbrink J, McKee LS. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility [Internet]. 1.a ed. Vol. 110, Advances in Applied Microbiology.
Elsevier Inc.; 2019. 63-98 p. Disponible en: http://dx.doi.org/10.1016/bs.aambs.2019.11.001 | spa |
dc.relation.references | Moran NA, Tran P, Gerardo NM, Moran NA, Tran P, Gerardo NM. Symbiosis and Insect Diversification : an Ancient Symbiont of Sap-Feeding Insects from the Bacterial Phylum
Bacteroidetes Symbiosis and Insect Diversification : an Ancient Symbiont of Sap-Feeding Insects from the Bacterial Phylum Bacteroidetes. 2005;71(12). | spa |
dc.relation.references | Shivaji S, Chaturvedi P, Reddy GSN, Suresh K. Pedobacter himalayensis sp. nov., from the Hamta glacier located in the Himalayan mountain ranges of India. Int J Syst Evol Microbiol. 2005;55(3):1083-8. | spa |
dc.relation.references | Song M, Jiang L, Zhang D, Luo C, Yin H, Li Y, et al. Identification of biphenyl-metabolising microbes in activated biosludge using cultivation-independent and -dependent approaches. J Hazard Mater [Internet]. 2018;353(2010):534-41. Disponible en: https://doi.org/10.1016/j.jhazmat.2018.04.028 | spa |
dc.relation.references | Moral S, Ramírez-coutiño LP, García-gómez MDJ. Aspectos relevantes del uso de enzimas en la industria de los alimentos. Rev Iberoam Ciencias. 2015;2(3):87-102 | spa |
dc.relation.references | Pérez SA, Niño ZM, Hernández V, Hernández C. Uso de enzimas de tipo ureasa en el tratamiento de aguas residuales con alto contenido en nitrógeno orgánico. Inf Tecnol. 2007;18(5):41-8. | spa |
dc.relation.references | Liu Y, Dyall-Smith M, Marenda M, Hu H-W, Browning G, Billman-Jacobe H. Antibiotic Resistance Genes in Antibiotic-Free Chicken Farms. Antibiotics. 2020;9(3):120. | spa |
dc.relation.references | Donado-godoy P, Byrne BA, León M, Castellanos R, Vanegas C, Coral A, et al. Prevalence, resistance patterns, and risk factors for antimicrobial resistance in bacteria from retail chicken meat in Colombia. J Food Prot. 2015;78(4):751-9. | spa |
dc.relation.references | Poudel A, Kang Y, Mandal RK, Kalalah A, Butaye P, Hathcock T, et al. Comparison of microbiota, antimicrobial resistance genes and mobile genetic elements in flies and the feces of sympatric animals. FEMS Microbiol Ecol. 2020;96(4):1-13. | spa |
dc.relation.references | Franz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol [Internet]. 2011;151(2):125-40. Disponible en: http://dx.doi.org/10.1016/j.ijfoodmicro.2011.08.014 | spa |
dc.relation.references | Osman KM, Badr J, Orabi A, Elbehiry A, Saad A, Ibrahim MDS, et al. Poultry as a vector for emerging multidrug resistant Enterococcus spp.: First report of vancomycin (van) and the chloramphenicol–florfenicol (cat-fex-cfr) resistance genes from pigeon and duck faeces. Microb Pathog [Internet]. 2019;128:195-205. Disponible en: https://doi.org/10.1016/j.micpath.2019.01.006 | spa |
dc.relation.references | Ethèves MA, Choisis N, Alvarez S, Dalleau F, Hascoat J, Gallard V, et al. Risk factors for Salmonella enterica subsp. enterica persistence in broiler-chicken flocks on Reunion Island. Heliyon. 2021;7(3). | spa |
dc.relation.references | Velázquez. ESCUELA SUPERIOR POLITÉCNICA AGROPECUARIA DE MANABÍ MANUEL FÉLIX LÓPEZ Tema : 2012;1-103. | spa |
dc.relation.references | García B, Instituto D, Animal DC. Síndrome de Mala Absorción en aves - Malabsorption síndrome in poultry. Redvet. 2010;11(12):165-72. | spa |
dc.relation.references | Fernández-Olmos A, García C, Sáez-Nieto JA, Valdezate S. Métodos de identificación bacteriana en el laboratorio de microbiología. Vol. 29, Enfermedades Infecciosas y Microbiologia Clinica. 2011. 601-608 p. | spa |
dc.relation.references | Wynants E, Frooninckx L, Van Miert S, Geeraerd A, Claes J, Van Campenhout L. Risks related to the presence of Salmonella sp. during rearing of mealworms (Tenebrio molitor) for food or feed: Survival in the substrate and transmission to the larvae. Food Control [Internet]. 2019;100:227-34. Disponible en: https://doi.org/10.1016/j.foodcont.2019.01.026 | spa |
dc.relation.references | Messens W, Hugas M, Afonso A, Aguilera J, Berendonk TU, Carattoli A, et al. Advancing biological hazards risk assessment. EFSA J. 2019;17(S1):1-10. | spa |
dc.relation.references | Abd El-Aziz NK, Tartor YH, Gharieb RMA, Erfan AM, Khalifa E, Said MA, et al. Extensive Drug- Resistant Salmonella enterica Isolated From Poultry and Humans: Prevalence and Molecular Determinants Behind the Co-resistance to Ciprofloxacin and Tigecycline. Front Microbiol. 2021;12(November). | spa |
dc.relation.references | Pérez de Rosas AM. Utilización de cepas de Bacteroides spp. como probiótico en conejos. 2014;1-181. | spa |
dc.relation.references | Garcia Alonso A. Trabajo fin de Grado: Microbiota intestinal y diabetes. 2017;1-20. Disponible en: https://eprints.ucm.es/51326/1/ANTONIO BELTRAN MARTIN.pdf | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Alphitobius diaperinus | spa |
dc.subject.proposal | Microbioma de artrópodos | spa |
dc.subject.proposal | Bioprospección | spa |
dc.subject.proposal | Metagenómica | spa |
dc.subject.proposal | Genes de resistencia | spa |
dc.subject.proposal | Vector de ARG | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |