dc.contributor.advisor | Buesaquillo Salazar, Diego Andrés | |
dc.contributor.author | Guerrero Peñaranda, Luis Alberto | |
dc.date.accessioned | 2024-04-24T15:47:44Z | |
dc.date.available | 2024-04-24T15:47:44Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6770 | |
dc.description.abstract | En este documento se propone crear indicadores para la tasa de desempleo basados en Google Trends (GT). Para esto se seleccionan palabras clave relacionadas a la búsqueda de empleo, que tengan una relación fuerte y positiva con la tasa de desempleo bogotana. Seleccionadas las palabras se crean los Índices de Google Trends (IGT, IGT2, IGT3). Con los modelos SARIMA se escoge la mejor predicción por medio del MAPE y RMSE. De este resultado se concluye que el mejor indicador para el desempleo bogotano es IGT con los parámetros (2,2,4) 𝑥� (2,2,0,12). Por último se recalca que las predicciones son buenas en el corto plazo y que es posible saber el comportamiento (aumentos o disminuciones) de la tasa de desempleo por medio de los IGT con las palabras clave más relacionadas al desempleo, siempre teniendo en cuenta el contexto del periodo de tiempo estudiado | spa |
dc.format.extent | 37p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | Creación y pronóstico de indicadores de desempleo en Bogotá durante la pandemia del COVID-19 a partir de Google Trends | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.contributor.corporatename | Universidad Colegio Mayor de Cundinamarca | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Economista | spa |
dc.publisher.faculty | Facultad de Administración y Economía | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Economía | spa |
dc.relation.references | Angelini, E., Ba´nbura, M., Runstler, G. (2008). “Estimating and Forecasting the Euro Area Monthly National Accounts From a Dynamic Factor Model”, ECB Working Paper Series, 953. Recuperado de https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp953.pdf | spa |
dc.relation.references | Angelini, E., Camba-Mendez, G., Giannone, D., Reichlin, L. (2011). ”ShortTerm Forecasts of Euro Area GDP Growth”, The Econometrics Journal, 14(1), C25-C44. Recuperado de https://www.jstor.org/stable/23127215 | spa |
dc.relation.references | Askitas, N., Zimmermann, K. (2009). Google Econometrics and Unemployment Forecasting. Applied Economics Quarterly, 107-120. Recuperado de https://ftp.iza.org/dp4201.pdf | spa |
dc.relation.references | Barreira, N., Godinho, P., y Melo, P. (2013). Nowcasting unemployment rate and new car sales in south-western Europe with Google Trends. Netnomics, 129–165. doi:https://doi.org/10.1007/s11066-013-9082-8 | spa |
dc.relation.references | Boettcher, I. (2015). “Automatic Data Collection on the Internet (Web Scraping)”, New Techniques and Technologies for Statistics, Eurostat Conference, 9-13 March 2015. Recuperado de https://ec.europa.eu/eurostat/cros/system/files/NTTS2015%20proceedings.pdf_en | spa |
dc.relation.references | Campos, R., López-Araiza, S. (2020). GRANDES DATOS, GOOGLE Y DESEMPLEO. Estudios Económicos, 35(1), 125-151. Recuperado de https://www.jstor.org/stable/26863997 | spa |
dc.relation.references | Cardona, L., Rojas, J. (2017). Pronósticos para la tasa de desempleo en Colombia. Archivos de economía. Recuperado de https://colaboracion.dnp.gov.co/CDT/Estudios%20Econmicos/468.pdf | spa |
dc.relation.references | Cavallo, A., Rigobon, R. (2016). “The Billion Prices Project: Using Online Prices for Measurement and Research”. The Journal of Economic Perspectives, 30(2), 151-178. Recuperado de https://www.aeaweb.org/articles?id=10.1257/jep.30.2.151 | spa |
dc.relation.references | Cerchiello, P., Giudici, P. (2014). “How to Measure the Quality of Financial Tweets”. Working Paper, ECB Workshop on using big data for forecasting and statistics, 07-08/04/2014, Frankfurt. | spa |
dc.relation.references | Chadwick, M., Gönül, Ş. (2012). Nowcasting Unemployment Rate in Turkey: Let's Ask Google. Central Bank of the Republic of Turkey. Recuperado de https://www.tcmb.gov.tr/wps/wcm/connect/635829fc-6c5f-4249-ab78-96fdc3a62cc8/WP1218.pdf?MOD=AJPERESyCACHEID=ROOTWORKSPACE-635829fc-6c5f-4249-ab78-96fdc3a62cc8-m3fw5-6 | spa |
dc.relation.references | Chamberlin, G. (2010). Googling the present. Economic and Labour Market Review, 59-95. doi:https://doi.org/10.1057/elmr.2010.166 | spa |
dc.relation.references | Chang, J., Del Río, A. (2013). Google Trends: Predicción del nivel de empleo agregado en Perú usando datos en tiempo real, 2005-2011. Banco Central de Reserva del Perú. Recuperado de https://www.bcrp.gob.pe/docs/Publicaciones/Documentos-de-Trabajo/2013/documento-de-trabajo-15-2013.pdf | spa |
dc.relation.references | Chen, L., Fan, S. y Lee, W-J. "Short-Term Load Forecasting Using Comprehensive Combination Based on Multimeteorological Information," in IEEE Transactions on Industry Applications, vol. 45, no. 4, pp. 1460-1466, July-aug. 2009, doi: 10.1109/TIA.2009.2023571. | spa |
dc.relation.references | Choi, H., Varian, H. (2009a). Predicting the Present with Google Trends. USA: Google Inc. Recuperado de https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1659302 | spa |
dc.relation.references | Choi, H., Varian, H. (2009b). Predicting Initial Claims for Unemployment Benefits. Recuperado de https://static.googleusercontent.com/media/research.google.com/es//archive/papers/initialclaimsUS.pdf | spa |
dc.relation.references | Choi, H., Varian, H. (2012). Predicting the Present with Google Trends. THE ECONOMIC RECORD, 88, 2–9. Recuperado de https://doi.org/10.1111/j.1475-4932.2012.00809.x | spa |
dc.relation.references | Ettredge, M., Gerdes, J., y Karuga, G. (2005). Using Web-based Search Data to Predict Macroeconomic Statistics. COMMUNICATIONS OF THE ACM, 87-92. Recuperado de https://www.researchgate.net/publication/200110929_Using_Web-based_search_data_to_predict_macroeconomic_statistics | spa |
dc.relation.references | Giannone, D., Reichlin, L., Simonelli (2009). “Nowcasting Euro Area Economic Activity in Real-Time: The Role of Confidence Indicators”, National Institute Economic Review, 210, 90-97. Recuperado de https://www.jstor.org/stable/23881019 | spa |
dc.relation.references | Ginsberg, J., Mohebbi, M., Patel, R., Brammer, L., Smolinski, M., y Brilliant, L. (2009). Detecting influenza epidemics using search engine. Nature, 457, 1012-1015. doi:https://doi.org/10.1038/nature07634 | spa |
dc.relation.references | Griffioen, R., de Haan, J., Willenborg, L. (2014). “Collecting Clothing Data from the Internet”, Statistics Netherlands Technical Report. Recuperado de https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.22/2014/UNECE-ILO_2014_Griffioen_deHaan_Willenborg.pdf | spa |
dc.relation.references | Heston, S. L., Sinha, N. R. (2014). “News versus Sentiment: Comparing Textual Processing Approaches for Predicting Stock Returns”, Working Paper. Recuperado de https://finpko.ku.edu/myssi/FIN938/Heston%20&%20Sinha_News%20vs%20Sentiment_WP_2014.pdf | spa |
dc.relation.references | Varian, H. (2014). Big Data: New Tricks for Econometrics. Journal of Economic Perspectives, 28(2), 3–28. doi:10.1257/jep.28.2.3 | spa |
dc.relation.references | Yiu, M. S., Chow, K. K. (2010). “Nowcasting Chinese GDP: Information Content of Economic and Financial Data”, China Economic Journal, 3(3), 223-240. Recuperado de https://www.researchgate.net/publication/228272415_Nowcasting_Chinese_GDP_Information_Content_of_Economic_and_Financial_Data | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Desempleo | spa |
dc.subject.proposal | Google Trends | spa |
dc.subject.proposal | SARIMA | spa |
dc.subject.proposal | Indicadores lideres | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |