Mostrar el registro sencillo del ítem
Evaluación de la capacidad antifúngica del péptido antimicrobiano Satanin 1 inmovilizado en nanopartículas de plata (AgNPs) contra levaduras del género Candida spp.
dc.contributor.advisor | Muñoz Henao, Julián Esteban | |
dc.contributor.advisor | Cruz Baquero, Claudia Andrea | |
dc.contributor.author | Estupiñan Núñez, Natalia Elisabeth | |
dc.contributor.author | Roa Alarcón, Sara Camila | |
dc.date.accessioned | 2024-09-19T19:58:56Z | |
dc.date.available | 2024-09-19T19:58:56Z | |
dc.date.issued | 2024-04 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/7056 | |
dc.description.abstract | Los altos niveles de resistencia observados en diversas especies de Candida, combinados con la escasa disponibilidad de antifúngicos para tratar la candidiasis, han impulsado el interés en los péptidos antimicrobianos como una prometedora opción terapéutica, especialmente en el contexto de microorganismos multidrogorresistentes. En la actualidad, se están desarrollando enfoques interdisciplinarios que combinan las ciencias biomédicas y la ingeniería para abordar diversas enfermedades infecciosas. Una de estas técnicas involucra la aplicación de nanopartículas metálicas como una estrategia en modo de sistema de administración de fármacos dirigida contra patógenos. Lo que, a su vez, reduce significativamente los efectos secundarios asociados a los antimicrobianos convencionales utilizados en el tratamiento de infecciones. Además, las nanopartículas tienen importantes aplicaciones actuales y potenciales de creciente relevancia en la investigación y el tratamiento de la Candidiasis. Teniendo en cuenta lo anterior, el presente estudio busca demostrar el efecto antifúngico del péptido Satanin 1 inmovilizado en nanopartículas de plata, lo que podría suponer un avance significativo en el control de la candidiasis. Además, podría contribuir al desarrollo de tratamientos más específicos y menos tóxicos, para infecciones causadas por especies del género Candida. | spa |
dc.description.tableofcontents | TABLA DE CONTENIDO 1. INTRODUCCIÓN 12 2. ANTECEDENTES 14 3. MARCO REFERENCIAL 17 3.1 Infecciones fúngicas por levaduras del género Candida spp. 17 3.2 Epidemiología de Candida spp., en Colombia 18 3.3 Especies de Candida con alta importancia clínica 19 3.3.1 Candida albicans 19 3.3.2 Candida glabrata 20 3.3.3 Candida parapsilosis 20 3.3.4 Candida tropicalis 21 3.3.5 Candida krusei 21 3.4 Resistencia a los antifúngicos en Candida spp. 22 3.5 Aplicaciones antimicrobianas de nanopartículas metálicas (NPs) 22 3.5.1 Nanopartículas metálicas de plata (AgNPs) y su efecto en Candida spp. 24 3.6 Péptidos antimicrobianos (PAMs) 25 3.6.1 Modo de acción de los péptidos antimicrobianos (PAMs) en Candida 25 3.6.2 Péptido antimicrobiano Satanin 1 26 4. MARCO METODOLÓGICO 28 4.1 Diseño metodológico 28 4.2 Materiales y métodos 28 4.2.1 Síntesis de nanopartículas de plata 29 4.2.2 Concentración Inhibitoria Mínima (CIM) 29 4.2.3 Microscopía de Fluorescencia y conteo de hifas/levaduras en C. albicans 30 4.2.4 Ensayo de viabilidad celular (MTT) 30 4.2.5 Ensayo de hemólisis en eritrocitos humanos 31 4.2.6 Análisis estadístico 32 5. RESULTADOS 33 5.1 Concentración Inhibitoria Mínima (CIM) 33 5.2 Microscopía de Fluorescencia y conteo de hifas/levaduras en C. albicans 34 5.3 Evaluación de la actividad tóxica de las AgNPs, Satanin 1 y el bioconjugado (AgNPs + S1) sobre células VERO 36 5.4 Evaluación de la actividad hemolítica de las AgNPs, Satanin 1 y el bioconjugado (AgNPs + S1) sobre eritrocitos humanos 37 6. DISCUSIÓN 39 7. CONCLUSIONES 45 7.1 Recomendaciones 46 8. REFERENCIAS BIBLIOGRÁFICAS 47 9. ANEXOS 57 | spa |
dc.format.extent | 69p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | Evaluación de la capacidad antifúngica del péptido antimicrobiano Satanin 1 inmovilizado en nanopartículas de plata (AgNPs) contra levaduras del género Candida spp. | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.contributor.corporatename | Universidad Colegio Mayor de Cundinamarca | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá D.C | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Cortés JA, Ruiz JF, Melgarejo-Moreno LN, Lemos EV. Candidemia en Colombia. Biomédica [Internet]. 2020; 40 (1):195-207. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/4400 | spa |
dc.relation.references | Martins N, Ferreira ICFR, Barros L, Silva S, Henriques M. Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia [Internet]. 2014; 177(5-6): 223–240. Disponible en: https://link.springer.com/article/10.1007/s11046-014-9749-1 | spa |
dc.relation.references | Bengel W. Candidiasis orales. Parte 1: cuadro clínico, epidemiología y etiología. Quintessence [Internet]. 2010; 23(10):510-517. Disponible en: https://www.elsevier.es/es-revista-quintessence-9-articulo-candidiasis-orales-parte-1-cuadro-X0214098510886703 | spa |
dc.relation.references | D'Enfert C, Kaune AK, Alaban L-R, Chakraborty S, Cole N, Delavy M, et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev [Internet]. 2021 may [citado 11 nov 2022]; 45(3). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100220/ | spa |
dc.relation.references | Silva V, Diaz M, Febré N. Surveillance of antifungal drugs resistance in yeasts. Rev. Chil. Infectol [Internet]. 2002; 19(2):149-156. Disponible en: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182002019200016&lng=en&nrm=iso&tlng=en | spa |
dc.relation.references | Cortés J, Jaimes J, Leal A. Incidencia y prevalencia de candidemia en pacientes críticamente enfermos en Colombia. Rev. chil. infectol [Internet]. 2013; 30(6): 599-604. Disponible en: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182013000600004&lng=en&nrm=iso&tlng=en | spa |
dc.relation.references | Arendrup MC, Patterson T. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. The Journal of Infectious Diseases [Internet]. 2017 ago [citado 11 nov 2022]; 216(3):445-451. Disponible en: https://academic.oup.com/jid/article/216/suppl_3/S445/4107052 | spa |
dc.relation.references | Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis [Internet]. 2016 feb [citado 11 nov 2022]; 62(4). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725385/ | spa |
dc.relation.references | Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. CMI [Internet]. 2019 jul [citado 11 nov 2022]; 25(7):792-798. Disponible en: https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(19)30149-1/fulltext | spa |
dc.relation.references | Huynh KH, Pham XH, Kim J, Lee SH, Chang H, Rho WY, et al. Synthesis, Properties, and Biological Applications of Metallic Alloy Nanoparticles. Int. J. Mol. Sci [Internet]. 2020; 21(14):5174. Disponible en: https://www.mdpi.com/1422-0067/21/14/5174 | spa |
dc.relation.references | Grumezescu AM. Nanoarchitectonics in Biomedicine [Internet]. Amsterdam. Elsevier; 2019. 720p. Disponible en: https://www.researchgate.net/profile/Manikandan-Elayaperumal/publication/339200394_Polymer-based_calcium_phosphate_scaffolds_for_tissue_engineering_applications/links/5e43a46d458515072d933e15/Polymer-based-calcium-phosphate-scaffolds-for-tissue-engineering-applications.pdf | spa |
dc.relation.references | Jeong WJ, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S. Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Convergence [Internet]. 2018; 5(1):38. Disponible en: https://nanoconvergencejournal.springeropen.com/articles/10.1186/s40580-018-0170-1 | spa |
dc.relation.references | Mikolajczak DJ, Heier JL, Schade B, Koksch B. Catalytic Activity of Peptide–Nanoparticle Conjugates Regulated by a Conformational Change. Biomacromolecules [Internet]. 2017; 18(11): 3557–3562. Disponible en: https://pubs.acs.org/doi/10.1021/acs.biomac.7b00887 | spa |
dc.relation.references | Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defenses. Trends in Microbiology [Internet]. 2000; 8(9): 402–410. Disponible en: https://www.cell.com/trends/microbiology/abstract/S0966-842X(00)01823-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0966842X00018230%3Fshowall%3Dtrue | spa |
dc.relation.references | Perez A, Eraso E, Quindós G, Estibaliz M. Antimicrobial Peptides with Anti-Candida Activity. Int J Mol Sci [Internet]. 2022;23(16):9264. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409312/ | spa |
dc.relation.references | Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int. J. Mol. Sci [Internet]. 2021; 22(21):11691. Disponible en: https://www.mdpi.com/1422-0067/22/21/11691 | spa |
dc.relation.references | Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev [Internet]. 2018;47(10):3574-3620. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386136/ | spa |
dc.relation.references | Artunduaga JJ, Paredes DJ, Sánchez CI, Ortiz CC, Torres RG. In vitro antifungal activity of silver nanoparticles against fluconazole-resistant Candida species. World Journal of Microbiology and Biotechnology [Internet]. 2015;31:1801-1809. Disponible en: https://link.springer.com/article/10.1007/s11274-015-1933-z | spa |
dc.relation.references | Henao DC, Toro LJ, Téllez GA, Osorio JF, Rodríguez A, Valle J, et al. Novel antimicrobial cecropins derived from O. curviconis and D. satanas dung beetles. Peptides [Internet]. 2021;145. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0196978121001340 | spa |
dc.relation.references | Henao DC. Caracterización estructural y funcional de las cecropinas sintéticas, Satanin 1, 2 y Curvicina identificadas en Dichotomius satanas y Onthophagus curvicornis [Tesis de Doctorado]. Armenia: Universidad del Quindío; 2022. Disponible en: https://bdigital.uniquindio.edu.co/bitstream/handle/001/6309/Tesis%20y%20acta%20de%20sustentaci%c3%b3n_2022.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Molina JS, Muñoz JE, Celis AM. Evaluation of satanin 1 as a potential antifungal drug to treat Malassezia infections. Repositorio Uniandes [Internet]. Disponible en: https://repositorio.uniandes.edu.co/server/api/core/bitstreams/e6969ba6-8051-4afb-8236-32ea0f3fa115/content | spa |
dc.relation.references | Arya NR, Rafiq NB. Candidiasis [Página principal en Internet]. StatPearls; 2023 (actualizada en mayo 2023). Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK560624/ | spa |
dc.relation.references | Bongomin F, Gago S, Oladele RO, Denning DW. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J Fungi. 2017;3(4)57. Disponible en: https://www.mdpi.com/2309-608X/3/4/57 | spa |
dc.relation.references | Quindós G. Epidemiology of invasive mycoses: A landscape in continuous change. Elsevier [Internet]. 2018; 35(4):171-178. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1130140618300585?via%3Dihub | spa |
dc.relation.references | Scorzoni L, Fuchs BB, Junqueira JC, Mylonakis E. Current and promising pharmacotherapeutic options for Candidiasis. Expert Opin Pharmacother [Internet]. 2021; 22(7):867-887. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122024/ | spa |
dc.relation.references | Aguiar PA, Menezes RP, Penatti MP, Moreira TA, Pimenta JP, Silva NB, et al. Rapid detection of biofilm-producing Candida species via MALDI-TOF mass spectrometry. Journal of Applied Microbiology [Internet]. 2021; 131(4):2049-2060. Disponible en: https://academic.oup.com/jambio/article-abstract/131/4/2049/6716000?redirectedFrom=fulltext&login=false | spa |
dc.relation.references | Staniszewska M. Virulence factors in Candida species. Current Protein and Peptide Science [Internet]. 2020; 21(3):313-323. Disponible en: https://www.ingentaconnect.com/content/ben/cpps/2020/00000021/00000003/art00009 | spa |
dc.relation.references | De Bedout C, Gómez BL. Candida y candidiasis invasora: un reto continuo para su diagnóstico temprano. Infectio [Internet]. 2010; 14(S2): S159-S171. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922010000600008 | spa |
dc.relation.references | Motoa G, Muñoz JS, Oñate J, Pallares CJ, Hernández C, Villegas MV. Epidemiology of Candida isolates from Intensive Care Units in Colombia from 2010 to 2013. Elsevier [Internet]. 2017;34(1):17-22. Disponible en: https://www.elsevier.es/es-revista-revista-iberoamericana-micologia-290-articulo-epidemiology-candida-isolates-from-intensive-S1130140616300286#:~:text=Distribution%20of%20Candida%20species%20from,and%206.8%25%20from%20abdominal%20fluid. | spa |
dc.relation.references | Bedout C, Ayabaca J, Vega R, Méndez M, Santiago AR, Pabón ML, et al. Evaluación de la susceptibilidad de especies de Candida al fluconazol por el método de difusión de disco. Biomédica [Internet]. 2002;23(1):31-7. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/1195 | spa |
dc.relation.references | Nucci M, Queiroz F, Tobón AM, Restrepo A, Colombo AL. Epidemiology of Opportunistic Fungal Infections in Latin América. Clinical Infectious Disease [Internet]. 2010; 51(5):561-570. Disponible en: https://academic.oup.com/cid/article/51/5/561/333903?login=false | spa |
dc.relation.references | Rodríguez G, Fiori A, López LF, Gómez BL, Parra CM, Gómez A, et al. Characterizing atypical Candida albicans clinical isolates from six third-level hospitals in Bogotá, Colombia. BMC Microbiol [Internet]. 2015; 15:199. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594647/ | spa |
dc.relation.references | World Health Organization (OMS). WHO fungal priority pathogens list to guide research, development and public health action [Internet]. 2022; ISBN 978-92-4-006024-1. Disponible en: https://repisalud.isciii.es/bitstream/handle/20.500.12105/15113/WHO_FungalPriorityPathogensList_2022.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Ciurea CN, Kosovski IB, Mare AD, Toma F, Pintea IA, Man A. Candida and Candidiasis-Opportunism versus pathogenicity: A review of the virulence traits. Microorganisms [Internet]. 2020; 8(6):857. Disponible en: https://www.mdpi.com/2076-2607/8/6/857 | spa |
dc.relation.references | Chen H, Zhou X, Ren B, Cheng L. The regulation of hyphae growth in Candida albicans. Virulence [Internet]. 2020; 11(1):337-348. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161696/ | spa |
dc.relation.references | Castrejon NS, Castillo J, Baltierra SL, Hernandez JC, Garcia BE. Candida glabrata is a successful pathogen: An artist manipulating the immune response. Microbiological Research [Internet]. 2022; 260. Disponible en: https://www.sciencedirect.com/science/article/pii/S0944501322000787?via%3Dihub | spa |
dc.relation.references | Gabaldon T, Gomez E, Bader O. Molecular Typing of Candida glabrata. Mycopathologia [Internet]. 2020; 185:755-764. Disponible en: https://link.springer.com/article/10.1007/s11046-019-00388-x | spa |
dc.relation.references | Branco J, Miranda IM, Rodrigues AG. Candida parapsilosis virulence and antifungal resistance mechanisms: A comprehensive review of key determinants. J Fungi [Internet]. 2023; 9(1):80. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862255/ | spa |
dc.relation.references | Toth R, Nosek J, Mora HM, Gabaldon T, Bliss JM, Nosanchuk JD, et al. Candida parapsilosis: from genes to the bedside. Clin Microbiol Rev [Internet]. 2019; 32(2):111-118. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431126/ | spa |
dc.relation.references | Xu Z. Is natural population of Candida tropicalis sexual, parasexual, and/or asexual? Front Cell Infect Microbiol [Internet]. 2021; 11. Disponible en; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573272/ | spa |
dc.relation.references | De Souza CM, Dos Santos MM, Furlanetgo L, Furlaneto MC. Adhesion and biofilm formation by the opportunistic pathogen Candida tropicalis: what do we know? Canadian Journal of Microbiology [Internet]. 2023. Disponible en: https://cdnsciencepub.com/doi/full/10.1139/cjm-2022-0195?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org | spa |
dc.relation.references | Jamiu AT, Albertyn J, Sebolai OM, Pohl CH. Update on Candida krusei, a potencial multidrug-resistant pathogen. Medical Mycology [Internet]. 2021; 59(1):14-30. Disponible en: https://academic.oup.com/mmy/article-abstract/59/1/14/5836561?redirectedFrom=fulltext&login=false | spa |
dc.relation.references | Kaur J, Nobile CJ. Antifungal drug-resistance mechanisms in Candida biofilms. Current Opinion in Microbiology [Internet]. 2023; 71. Disponible en: https://www.sciencedirect.com/science/article/pii/S1369527422001217?via%3Dihub | spa |
dc.relation.references | Perrine F. Caspofungin resistance in Candida albicans: genetic factors and synergistic compounds for combination therapies. Braz J Microbiol [Internet]. 2022; 53(3):1101-113. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433586/ | spa |
dc.relation.references | Zahin N, Anwar R, Tewari D, Tanvir M, Sajid A, Bijo M, et al. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Nanotechnology, Nanopollution, Nanotoxicology and Nanomedicine [Internet]. 2020; 27:19151-19168. Disponible en: https://link.springer.com/article/10.1007/s11356-019-05211-0 | spa |
dc.relation.references | Mercan DA, Niculescu AG, Grumezescu AM. Nanoparticles for antimicrobial agents delivery-An up-tp-date review. Int J Mol Sci [Internet]. 2022; 23(22). Disponible en> https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696780/ | spa |
dc.relation.references | Do Carmo PH, Garcia MT, Figueiredo LM, Lage AC, Da Silva NS, Junqueira JC. Metal nanoparticles to combat Candida albicans infections: An update. Microorganisms [Internet]. 2023; 5;11(1):138. Disponible en: https://www.mdpi.com/2076-2607/11/1/138 | spa |
dc.relation.references | Mba IE, Nweze EI. The use of nanoparticles as alternative therapeutic agents against Candida infections: an up-to-date overview and future perspectives. World Journal of Microbiology and Biotechnology [Internet]. 2020; 163(36). Disponible en: https://link.springer.com/article/10.1007/s11274-020-02940-0 | spa |
dc.relation.references | Aderibigbe BA. Metal-Based nanoparticles for the treatment of infectious diseases. Molecules [Internet]. 2017; 18;22(8):1370. Disponible en:https://ncbi.nlm.nih.gov/pmc/articles/PMC6152252/ | spa |
dc.relation.references | Ahamad I, Aziz N, Zaki A, Fatma T. Synthesis and characterization of silver nanoparticles using Anabaena variabilis as a potential antimicrobial agent. Journal of Applied Phycology [Internet]. 2021; 33:829-841. Disponible en: https://link.springer.com/article/10.1007/s10811-020-02323-w#Sec12 | spa |
dc.relation.references | Nisar P, Ali N, Rahman L, Ali M, Shinwari ZK. Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. JBIC [Internet]. 2019; 24:929-941. Disponible en: https://link.springer.com/article/10.1007/s00775-019- 01717-7 | spa |
dc.relation.references | Rajchakit U, Sarojini V. Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjugate chemistry [Internet]. 2017; 28(11):2673-2686. Disponible en: https://pubs.acs.org/doi/10.1021/acs.bioconjchem.7b00368 | spa |
dc.relation.references | Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against covid-19. Mol Biol Rep [Internet]. 2022; 49(10):10039-10050. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35606604/ | spa |
dc.relation.references | Silva AR, Guimaraes MS, Rabelo J, Herrera L, Perecin CJ, Farias JG, et al. Recent advance in the design of antimicrobial peptide conjugates. Journal of Materials Chemistry B [Internet]. 2022; 19. Disponible en: https://pubs.rsc.org/en/content/articlelanding/2022/tb/d1tb02757c | spa |
dc.relation.references | Mahlapuu M, Bjorn C, Ekblom J. Antimicrobial peptides as therapeutic agents: opportunities and challenges. Critical Reviews in Biotechnology [Internet]. 2020; 40(7):978-992. Disponible en: https://www.tandfonline.com/doi/full/10.1080/07388551.2020.1796576 | spa |
dc.relation.references | Lee H, Gun D. Novel approaches for efficient antifungal drug action. J Microbiol Biotechnol [Internet]. 2018; 28(11):1771-1781. Disponible en: https://www.jmb.or.kr/journal/view.html?doi=10.4014/jmb.1807.07002 | spa |
dc.relation.references | Efimova SS, Schagina LV, Ostroumova OS. Channel-forming activity of cecropins in lipid bilayers: effect of agents modifying the membrane dipole potential. Langmuir [Internet]. 2014; 30(26):7884–7892. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24969512/ | spa |
dc.relation.references | Xu J, Li Y, Wang H, Zhu M, Feng W, Liang G. Enhacend antibacterial and anti-biofilm activities of antimicrobial peptides modified silver nanoparticles. Int J Nanomedicine [Internet]. 2021; 16:4821-4846. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291838/#s0002title | spa |
dc.relation.references | Oñate-Garzón J, Manrique-Moreno M, Trier S, Chad L, Torres R, Patiño E. Antimicrobial activity and interactions of cationic peptides derived from Galleria mellonella cecropin D-like peptide with model membranes. J Antibiot [Internet]. 2017; 70:238-245. Disponible en: https://www.nature.com/articles/ja2016134#Sec2 | spa |
dc.relation.references | Ahamad I, Bano F, Anwer R, Srivastava P, Kumar R, Fatma T. Antibiofilm activities of biogenic silver nanoparticles against Candida albicans. Front Microbiol [Internet]. 2021; 12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782275/ | spa |
dc.relation.references | Muenraya P, Sawatdee S, Srichana T, Atipairin A. Silver nanoparticles conjugated with colistin enhanced the antimicrobial activity against Gram-negative bacteria. Molecules [Internet]. 2022; 2788). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505607/#sec2-molecules-27-05780title | spa |
dc.relation.references | Lass-Flörl C, Kanj SS, Govender NP, Thompson III GR, Ostrosky-Zeichner L, Govrins MA. Invasive candidiasis. Nature [Internet]. 2024; 10:20. Disponible en: https://www.nature.com/articles/s41572-024-00503-3 | spa |
dc.relation.references | Mantilla YF, Tuta E, Brito AJ, Clavijo LC. Candidiasis y Candida albicans. Boletín de Malariología y Salud Ambiental. [Internet] 2021; ISSN:1690-4648.Disponible en: https://docs.bvsalud.org/biblioref/2022/11/1400103/334-1600-1-pb.pdf#:~:text=Existen%20cerca%20de%20200%20especies,%2C%202019)%20pero%2C%20C. | spa |
dc.relation.references | Domínguez M. Switching fenotípico y locus de apareamiento (MTL) de aislados clínicos de Candida albicans y Candida tropicalis [Tesis de Maestría]. Puebla: Benemérita Universidad Autónoma de Puebla; 2018. Disponible en: https://repositorioinstitucional.buap.mx/server/api/core/bitstreams/5c7eea6e-be09-49d8-986c-6d116a559a93/content | spa |
dc.relation.references | Lachke SA, Joly S, Daniels K, Soll DR. Phenotypic switching and filamentation in Candida glabrata. Microbiology [Internet]. 2002; 148:2661-2674. Disponible en: https://www.microbiologyresearch.org/content/journal/micro/10.1099/00221287-148-9-2661 | spa |
dc.relation.references | Treviño-Rangel RJ, González-González JG, Garza-González E, González GM. Candida parapsilosis, una amenaza desafiante. Medicina Universitaria [Internet]. 2012; 14(56):155-163. Disponible en: https://www.elsevier.es/es-revista-medicina-universitaria-304-articulo-candida-parapsilosis-una-amenaza-desafiante-X1665579612676659 | spa |
dc.relation.references | Bonifaz, A. (2015) Micología Médica Básica. 5ta edn. México: McGraw-Hill. | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Candida | spa |
dc.subject.proposal | Candidiasis | spa |
dc.subject.proposal | Nanopartículas de plata | spa |
dc.subject.proposal | Satanin 1 | spa |
dc.subject.proposal | Bioconjugado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |