dc.contributor.advisor | Sánchez Mora, Ruth Mélida | |
dc.contributor.advisor | Romero Calderón, Ibeth Cristina | |
dc.contributor.author | Rodríguez Vásquez, Laura Ximena | |
dc.date.accessioned | 2024-05-24T16:46:41Z | |
dc.date.available | 2024-05-24T16:46:41Z | |
dc.date.issued | 2021-09-03 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6917 | |
dc.description.abstract | Pseudomonas aeruginosa es un microorganismo que presenta resistencia en los entornos
clínicos. Son diferentes los mecanismos por los cuales logra evadir los antimicrobianos, uno
de ellos son los sistemas de dos componentes. PhoQ y PhoP son un sistema de dos
componentes conocido principalmente en Salmonella sp., es por esto que su caracterización
in silico en Pseudomonas aeruginosa aporta al conocimiento sobre la identificación de
nuevos marcadores moleculares asociados a virulencia y resistencia. En el presente
proyecto se caracterizaron los genes PhoQ-PhoP de dos cepas MDR de P. aeruginosa
haciendo uso de herramientas bioinformáticas con el objetivo de buscar mutaciones frente a
las cepas sensibles a medicamentos, realizar un análisis filogenético con ortólogos y
determinar características de las proteínas codificadas por estos genes. Se logró observar
una mutación de cambio de sentido en PhoQ con un cambio de tirosina por fenilalanina, un
distanciamiento filogenético de P. aeruginosa en comparación a ortólogos de estos genes
por las diferencias funcionales y ambientales de las distintas especies y se obtuvo modelos
tridimensionales de buena calidad lo cual permite realizar la búsqueda de compuestos que
tengan afinidad de unión con estas proteínas, paso principal en el diseño racional de nuevos
medicamentos. Estos resultados pueden ser usados a futuro para el desarrollo de posibles
blancos terapéuticos o para la inhibición selectiva de P. aeruginosa en alternativas
terapéuticas. | spa |
dc.description.abstract | Pseudomonas aeruginosa is a microorganism that has resistance in clinical settings. The
mechanisms by which it manages to evade antimicrobials are different, one of them being
the two-component systems. PhoQ and PhoP are a two-component system known mainly in
Salmonella sp., Which is why their in silico characterization in Pseudomonas aeruginosa
contributes to the knowledge on the identification of new molecular markers associated with
virulence and resistance. In this project, the PhoQ-PhoP genes of two MDR strains of P.
aeruginosa were characterized using bioinformatics tools in order to search for mutations
against drug-sensitive strains, perform a phylogenetic analysis with orthologs and determine
protein characteristics. encoded by these genes. It was possible to observe a missense
mutation in PhoQ with a change from phenylalanine to tyrosine, a phylogenetic distancing of
P. aeruginosa in comparison to orthologs of these genes due to the functional and
environmental differences of the different species and three-dimensional models of good
quality which allows the search for compounds that have binding affinity with these proteins,
a main step in the rational design of new drugs. These results can be used in the future for
the development of possible therapeutic targets or for the selective inhibition of P. aeruginosa
in therapeutic alternatives. | eng |
dc.description.tableofcontents | Tabla de contenido
Resumen 9
Introducción 11
1. Objetivos 13
1.1 Objetivo general 13
1.2 Objetivos específicos 13
2. Antecedentes 14
3. Bases legales 16
4. Marco teórico 17
4.1 Características generales de Pseudomonas aeruginosa 17
4.2 Enfermedades o infecciones ocasionadas por Pseudomonas aeruginosa 17
4.2.1 Modo de transmisión 18
4.2.2 Tratamiento y resistencia en P. aeruginosa 18
4.2.3 Alternativas terapéuticas 19
4.3 Patogenicidad y virulencia de Pseudomonas aeruginosa 20
4.3.1 Genes de virulencia y resistencia en Pseudomonas aeruginosa 21
4.4 Función biológica de PhoP y PhoQ en microorganismos 21
4.5 Importancia de los estudios in silico en resistencia bacteriana 24
5. Metodología 25
6. Resultados 29
7. Discusión 47
8. Conclusiones 51
Referencias bibliográficas 51 | spa |
dc.format.extent | 67p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | Caracterización in silico de los genes de virulencia PhoP -PhoQ en cepas de Pseudomonas aeruginosa fenotipo multidrogo-resistente (MDR) | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.contributor.corporatename | Universidad Colegio Mayor de Cundinamarca | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá D.C | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Yagui M. Resistencia antimicrobiana: nuevo enfoque y oportunidad. Rev. perú. med.
exp. 2018; 35: 1726-4634. Disponible en:
http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-463420180001000
02 | spa |
dc.relation.references | Quiñones D. Resistencia antimicrobiana: evolución y perspectivas actuales ante el
enfoque "Una salud". Rev Cubana Med Trop. 2017; 69 (3): 1561-3054. Disponible en:
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602017000300009 | spa |
dc.relation.references | Ponce S, Arredondo R, López Y. La resistencia a los antibióticos: Un grave problema
global. Gac Med Mex. 2015;151:681-9. Disponible en:
https://www.medigraphic.com/pdfs/gaceta/gm-2015/gm155r.pdf | spa |
dc.relation.references | Ruiz P., & Cantón R. Epidemiology of antibiotic resistance in Pseudomonas
aeruginosa. Implications for empiric and definitive therapy. Rev Esp Quimioter.
(2017). 30 (Suppl. 1): 8-12. Disponible en:
https://seq.es/seq/0214-3429/30/suppl1/01ruiz.pdf | spa |
dc.relation.references | Tierney A & Rather P. Roles of two-component regulatory systems in antibiotic
resistance. Future Microbiol. 2019; 14(6): 533–552. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526388/ | spa |
dc.relation.references | Yang B, Liu C, Pan X, Fu W, Fan Z, Jin Y, et al. Identification of Novel phoP-phoQ
Regulated Genes that Contribute to Polymyxin B Tolerance in Pseudomonas
aeruginosa. Microorganisms. 2021; 9(2): 344. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916210/ | spa |
dc.relation.references | Bou G. Relación entre resistencia y virulencia en bacterias de interés clínico. Enferm
Infecc Microbiol Clin. 2014; 32(1):1–3. Disponible en:
https://www.elsevier.es/es-revista-enfermedades-infecciosas-microbiologia-clinica-28-
pdf-S0213005X13003352 | spa |
dc.relation.references | OMS. Carga mundial de infecciones asociadas a la atención sanitaria [Internet].
Disponible en: https://www.who.int/gpsc/country_work/burden_hcai/es/ [Consultado el
15 de enero de 2020] | spa |
dc.relation.references | Barchiesi J, Castelli M, Venanzio G, Colombo M, García E. The PhoP/PhoQ System
and Its Role in Serratia marcescens Pathogenesis. J Bacteriol. 2012; 194(11):
2949–2961. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370626/ | spa |
dc.relation.references | Instituto Nacional de Salud. Infecciones asociadas a dispositivos [Internet].
Disponible en:
https://www.ins.gov.co/buscador-eventos/Lineamientos/Pro_Infecciones%20asociada
s%20a%20dispositivos.pdf#search=IAAS [Consultado el 15 de enero de 2020] | spa |
dc.relation.references | Boyd S, Vasudevan A, Moore L, Brewer C, Gilchrist M, Costelloe C, et al. Validating a
prediction tool to determine the risk of nosocomial multidrug-resistant Gram-negative
bacilli infection in critically ill patients: A retrospective case–control study. J Glob
Antimicrob Resist. 2020; 22: 826-831. Disponible en:
https://www.sciencedirect.com/science/article/pii/S2213716520301855?via%3Dihub | spa |
dc.relation.references | Angelettia S, Cella E, Prosperi M, Spoto S, Fogolari M, Florio L, et al. Multi-drug
resistant Pseudomonas aeruginosa nosocomial strains: Molecular epidemiology and
evolution. Microb. Pathog. 2018; 123: 233-241. Disponible en:
https://www.sciencedirect.com/science/article/abs/pii/S0882401018306557?via%3Dih
ub | spa |
dc.relation.references | Tummler B. Emerging therapies against infections with Pseudomonas aeruginosa.
F1000 Faculty Rev. 2019; 8: 1371. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688719/ | spa |
dc.relation.references | Garbajosa P, Cantón R. Epidemiology of antibiotic resistance in Pseudomonas
aeruginosa. Implications for empiric and definitive therapy. Rev Esp Quimioter. 2017;
30: 8-12. Disponible en: https://seq.es/seq/0214-3429/30/suppl1/01ruiz.pdf | spa |
dc.relation.references | Wieland K, Chhatwal P, Vonberg R. Nosocomial outbreaks caused by Acinetobacter
baumannii and Pseudomonas aeruginosa: Results of a systematic review. Am. J.
Infect. Control. 2018; 46: 643-648. Disponible en:
https://pubmed.ncbi.nlm.nih.gov/29398072/ | spa |
dc.relation.references | INS. Infecciones asociadas a dispositivos en UCI. [Internet]. Disponible en:
https://www.ins.gov.co/buscador-eventos/Informesdeevento/INFECCIONES%20ASO
CIADAS%20A%20DISPOSITIVOS%20PE%20II%202021.pdf#search=pseudomonas
%20infecciones | spa |
dc.relation.references | Morales J, Andrade J. Risk factors associated with mortality and antibiotic
susceptibility patterns in Pseudomonas aeruginosa bacteremia. Bol. Med. Hosp.
Infant. 2006; 63 (5): 1665-1146. Disponible en:
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-114620060005000
02#:~:text=La%20mortalidad%20asociada%20a%20bacteriemias,incidencia%20de%
20infecciones%20por%20P. | spa |
dc.relation.references | Valderrama S, González PF, Caro MA, Ardila N, Ariza B, Gil F, et al. Factores de
riesgo para bacteriemia por Pseudomonas aeruginosa resistente a carbapenémicos
adquirida en un hospital colombiano. Biomédica. 2016; 36 (1): 69-77. Disponible en:
https://revistabiomedica.org/index.php/biomedica/article/view/2784 | spa |
dc.relation.references | Saavedra A, Duarte C, Nilse M, Realpe M. Caracterización de aislamientos de
Pseudomonas aeruginosa productores de carbapenemasas de siete departamentos
de Colombia. Biomédica 2014; 34 (1):217-23. Disponible en:
https://revistabiomedica.org/index.php/biomedica/article/view/1685 | spa |
dc.relation.references | Hérnandez A, Yague G, Vázquez E, Simon M, Moreno L, Canteras M. Infecciones
nosocomiales por Pseudomonas aeruginosa multiresistente incluido
carbapenémicos: factores predictivos y pronósticos. Estudio prospectivo 2016-2017.
Rev Esp Quimioter. 2018 Apr; 31(2): 123–130. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6159385/ | spa |
dc.relation.references | Derakhshanab S, Hosseinzadehc A. Resistant Pseudomonas aeruginosa carrying
virulence genes in hospitalized patients with urinary tract infection from Sanandaj,
west of Iran. Gene rep. 2020; 20: 100675. Disponible en:
https://doi.org/10.1016/j.genrep.2020.100675 | spa |
dc.relation.references | Horcajada J, Montero M, Oliver A, Sorlí L, Luque S, Gómez S, et al. Epidemiology
and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas
aeruginosa Infections. Clin Microbiol Rev. 2019; 32(4): e00031-19. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730496/ | spa |
dc.relation.references | Recio R, Mancheño M, Viedma E, Villa J, Orellana M, Lora J, et al. Predictors of
Mortality in Bloodstream Infections Caused by Pseudomonas aeruginosa and Impact
of Antimicrobial Resistance and Bacterial Virulence. Antimicrob Agents Chemother.
2020; 64(2): e01759-19. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985728/ | spa |
dc.relation.references | Sharma A, Sangwan N, Negi V, Kohli P, Khurana J, Lakshmi D, et al. Pan-genome
dynamics of Pseudomonas gene complements enriched across
hexachlorocyclohexane dumpsite. BMC Genomics. 2015; 16(1): 313. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405911/ | spa |
dc.relation.references | Orellana M, Pachecho N, Costa J, Mendez K, Miossec M, Meneses C. In-Depth
Genomic and Phenotypic Characterization of the Antarctic Psychrotolerant Strain
Pseudomonas sp. MPC6 Reveals Unique Metabolic Features, Plasticity, and
Biotechnological Potential. Front Microbiol. 2019; 10: 1154. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543543/ | spa |
dc.relation.references | Lee C, Klockgether J, Fischer S, Trcek J, Tummler B, Romling R. Why? – Successful
Pseudomonas aeruginosa clones with a focus on clone C. FEMS Microbiol Rev. 2020
Nov; 44(6): 740–762. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685784/ | spa |
dc.relation.references | Parkins M, Somayaji R, Waters V. Epidemiology, Biology, and Impact of Clonal
Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin Microbiol Rev. 2018;
31(4): e00019-1. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148191/ | spa |
dc.relation.references | Schwartz D, Cantor C. Separation of yeast chromosome-sized DNAs by pulsed field
gradient gel electrophoresis. Cell. 1984;37(1): 67-75. Disponible en:
https://pubmed.ncbi.nlm.nih.gov/6373014/ | spa |
dc.relation.references | Jolley K, Bray J, Maiden M. Open-access bacterial population genomics: BIGSdb
software, the PubMLST.org website and their applications. Wellcome Open Res.
2018; 3: 124. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192448/ | spa |
dc.relation.references | Yan Y, Yao X, Li H, Zhou Z, Huang W, Stratton C, et al. A Novel Pseudomonas
aeruginosa Strain with an oprD Mutation in Relation to a Nosocomial Respiratory
Infection Outbreak in an Intensive Care Unit. J Clin Microbiol. 2014; 52(12):
4388–4390. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313324/ | spa |
dc.relation.references | Xu Y, Zheng X, Zeng W, Chen T, Liao W, Lin J, et al. Mechanisms of Heteroresistance
and Resistance to Imipenem in Pseudomonas aeruginosa. Infect Drug Resist. 2020;
13: 1419–1428. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7234976/ | spa |
dc.relation.references | Yoon E, Kim D, Lee H, Sun H, Hwan J, Soo Y, et al. Mortality dynamics of
Pseudomonas aeruginosa bloodstream infections and the influence of defective OprD
on mortality: prospective observational study. J Antimicrob Chemother. 2019; 74(9):
2774-2783. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31236593/ | spa |
dc.relation.references | Balasubramanian D, Kumari H, Mathee K. Pseudomonas aeruginosa AmpR: an
acute–chronic switch regulator. Pathog Dis. 2015 Mar; 73(2): 1–14. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542883/ | spa |
dc.relation.references | Khatua B, Van J, Pronab B, Chaudhry R, Mandal C. Sialylation of Outer Membrane
Porin Protein D: A Mechanistic Basis of Antibiotic Uptake in Pseudomonas
aeruginosa. Mol Cell Proteomics. 2014; 13(6): 1412–1428. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047463/ | spa |
dc.relation.references | Tsutsumi Y, Tomita H, Tanimoto K. Identification of Novel Genes Responsible for
Overexpression of ampC in Pseudomonas aeruginosa PAO1. Antimicrob Agents
Chemother. 2013; 57(12): 5987–5993. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837884/ | spa |
dc.relation.references | Ho-Fung C, Krahn T, Gilmour C, Mullen E, Poole K. AmgRS-mediated envelope
stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas
aeruginosa. Microbiologyopen. 2015 Feb; 4(1): 121–135. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335980/ | spa |
dc.relation.references | Puja H, Bolard A, Nogués A, Plésiat, Jeannot K. The Efflux Pump MexXY/OprM
Contributes to the Tolerance and Acquired Resistance of Pseudomonas aeruginosa
to Colistin. Antimicrob Agents Chemother. 2020 Apr; 64(4): e02033-19. Disponible
en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179290/ | spa |
dc.relation.references | Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Substrate
Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in
Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2000 Dec; 44(12):
3322–3327. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC90200/ | spa |
dc.relation.references | Poole K, Ho-Fung C, Gilmour C, Hao Y, Lam J. Polymyxin Susceptibility in
Pseudomonas aeruginosa Linked to the MexXY-OprM Multidrug Efflux System.
Antimicrob Agents Chemother. 2015 Dec; 59(12): 7276–7289. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4649153/ | spa |
dc.relation.references | Nouri R, Ahangarzadeh M, Hasani A, Aghazadeh M, Asgharzadeh M. The role of
gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa
isolates from Iran. Braz J Microbiol. 2016; 47(4): 925–930. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052375/ | spa |
dc.relation.references | Feng X, Zhang Z, Li X, Song Y, Kang J, Yin D, et al. Mutations in gyrB play an
important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infect Drug Resist.
2019; 12: 261–272. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371945/ | spa |
dc.relation.references | Bruchmann S, Dötsch A, Nouri B, Chaberny I, Häussler S. Quantitative Contributions
of Target Alteration and Decreased Drug Accumulation to Pseudomonas aeruginosa
Fluoroquinolone Resistance. Antimicrob Agents Chemother. 2013 Mar; 57(3):
1361–1368. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591863/ | spa |
dc.relation.references | Colombia. Resolución Nº 008430 de 1993 por la cual se establecen las normas
científicas, técnicas y administrativas para la investigación en salud. (Boletín oficial
del Estado, 4 de octubre de 1993). | spa |
dc.relation.references | Vélez E. Bacilos Gram negativos no fermentadores de glucosa. En: Orjuela O,
Gallejo CR. Bacteriología Aplicada. Manual de Procedimientos. Colombia: Kimpres;
2014. p 101-102. | spa |
dc.relation.references | Burguillos L. Resistencia antibiótica en Pseudomonas aeruginosa: Situación
epidemiológica en España y alternativas de tratamiento. [Pregrado]. Universidad
Complutense; 2018. Disponible en:
http://147.96.70.122/Web/TFG/TFG/Memoria/LAURA%20BRAVO-BURGUILLOS%20
ROS.pdf | spa |
dc.relation.references | Paz V, Mangwani S, Martínez A, Álvarez D, Solano S, Vázquez R. Pseudomonas
aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Rev.
chil. infectol. 2019; 36 (2): 0716-1018. Disponible en:
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-1018201900020018
0 | spa |
dc.relation.references | Ruíz L. Pseudomonas aeruginosa: aportación al conocimiento de su estructura y al
de los mecanismos que contribuyen a su resistencia a los antimicrobianos.
[Doctoral].Universidad de Barcelona; 2017. Disponible en:
https://www.tdx.cat/bitstream/handle/10803/2521/LRM_TESIS.pdf | spa |
dc.relation.references | Ghadam P, Akhlaghi F, Abdi A. One-step purification and characterization of alginate
lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial
biofilm. Iran J Basic Med Sci. 2017; 20(5): 467–473. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478773/ | spa |
dc.relation.references | Moradali M, Ghods S, Rehm B. Pseudomonas aeruginosa Lifestyle: A Paradigm for
Adaptation, Survival, and Persistence. Front Cell Infect Microbiol. 2017; 7: 39.
Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310132/ | spa |
dc.relation.references | Bedard E, Prevost M, Deziel E. Pseudomonas aeruginosa in premise plumbing of
large buildings. Microbiologyopen. 2016; 5(6): 937–956. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5221438/ | spa |
dc.relation.references | Conceição J, Pereira P, Damasceno F, Ribeiro C, Oliveira S, Tranches A. Ozone
against Pseudomonas aeruginosa biofilms in contact lenses storage cases. Rev Inst
Med Trop Sao Paulo. 2019; 61: e23. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481249/ | spa |
dc.relation.references | Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas
aeruginosa in intensive care unit; a critical review. Genes Dis. 2019; 6(2): 109–119.
Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545445/ | spa |
dc.relation.references | Liu T, Zhang Y, Wan Q. Pseudomonas aeruginosa bacteremia among liver transplant
recipients. Infect Drug Resist. 2018; 11: 2345–2356. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247952/ | spa |
dc.relation.references | Tran M, Wibowo D, Rehm B. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020;
21(22): 8671. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698413/ | spa |
dc.relation.references | Malhotra S, Hayes D, Wozniak D. Cystic Fibrosis and Pseudomonas aeruginosa: the
Host-Microbe Interface. Clin Microbiol Rev. 2019; 32(3): e00138-18. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589863/ | spa |
dc.relation.references | Mui T, Kretzschmar M, Bertrand X, Bootsma M. Tracking Pseudomonas aeruginosa
transmissions due to environmental contamination after discharge in ICUs using
mathematical models. PLoS Comput Biol. 2019; 15(8): e1006697. Disponible en:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006697 | spa |
dc.relation.references | Bachta K, Allen J, Cheung B, Chiu C, Hauser A. Systemic Infection Facilitates
Transmission of Pseudomonas aeruginosa. BioRxi. 2019. Disponible en:
https://www.biorxiv.org/content/10.1101/765339v1.full | spa |
dc.relation.references | Mensa J, Barberán J, Soriano A, Llinares P, Marco F, Cantón R, et al. Antibiotic
selection in the treatment of acute invasive infections by Pseudomonas aeruginosa:
Guidelines by the Spanish Society of Chemotherapy. Rev Esp Quimioter. 2018; 31(1):
78–100. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6159363/ | spa |
dc.relation.references | Raman G, Avendano E, Chan J, Merchant S, Puzniak L. Risk factors for hospitalized
patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a
systematic review and meta-analysis. Antimicrob Resist Infect Control. 2018; 7: 79.
Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032536/ | spa |
dc.relation.references | Behzadi P, Barath Z, Gajdacs M. It’s Not Easy Being Green: A Narrative Review on
the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant
Pseudomonas aeruginosa. Antibiotics (Basel). 2021; 10(1): 42. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823828/ | spa |
dc.relation.references | Carmine A, Gomes A, Melo F, Ardisson D, Castagna A, Lunkes V. Characterization of
a bacteriophage with broad host range against strains of Pseudomonas aeruginosa
isolated from domestic animal. BMC Microbiol. 2019; 19: 134. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580649/ | spa |
dc.relation.references | Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic
Potential for Bacterial Skin Infections and Wounds. Front Pharmacol. 2018; 9: 281.
Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882822/ | spa |
dc.relation.references | Ruffin M, Brochiero E. Repair Process Impairment by Pseudomonas aeruginosa in
Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell
Infect Microbiol. 2019; 9: 182. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554286/ | spa |
dc.relation.references | Elmouaden C, Laglaoui A, Ennanei L, Bakkali M, Abid M. Virulence genes and
antibiotic resistance of Pseudomonas aeruginosa isolated from patients in the
Northwestern of Morocco. J. Infect. Dev. Ctries. 2019; 13(10):892-898. Disponible en:
https://jidc.org/index.php/journal/article/view/32084019 | spa |
dc.relation.references | Pejčića M, Stojanović-Radića Z, Genčić M, Dimitrijevića M, Radulovićb N.
Anti-virulence potential of basil and sage essential oils: Inhibition of biofilm formation,
motility and pyocyanin production of Pseudomonas aeruginosa isolates. Food Chem.
Toxicol. 2020; 141:111431. Disponible en: https://doi.org/10.1016/j.fct.2020.111431 | spa |
dc.relation.references | Sawa T, Shimizu M, Moriyama K, Wiener J. Association between Pseudomonas
aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. Crit
Care. 2014; 18(6): 668. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331484/ | spa |
dc.relation.references | Wang C, Liu X, Wang J, Zhou J, Cui Z, Hui L. Design and characterization of a
polyamine derivative inhibiting the expression of type III secretion system in
Pseudomonas aeruginosa. Sci Rep. 2016; 6: 30949. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971474/ | spa |
dc.relation.references | Ullah W, Qasim M, Rahman H, Jie Y, Muhammad N. Beta-lactamase-producing
Pseudomonas aeruginosa: Phenotypic characteristics and molecular identification of
virulence genes. Chin Med J. 2017; 80 (3): 173-177. Disponible en:
https://doi.org/10.1016/j.jcma.2016.08.011 | spa |
dc.relation.references | Schinner S, Engelhardt F, Preusse M, Gesine J, Tomasch J, Haussler S. Genetic
determinants of Pseudomonas aeruginosa fitness during biofilm growth. Biofilm.
2020; 2: 100023. Disponible en: https://doi.org/10.1016/j.bioflm.2020.100023 | spa |
dc.relation.references | Francis V, Stevenson E, Porter S. Two-component systems required for virulence in
Pseudomonas aeruginosa. FEMS Microbiol Lett. 2017; 364(11): fnx104. Disponible
en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812489/ | spa |
dc.relation.references | Groisman E. The Pleiotropic Two-Component Regulatory System PhoP-PhoQ. mBio.
2001; 1835-1842. Disponible en: https://jb.asm.org/content/183/6/1835 | spa |
dc.relation.references | Samantha A, Vrielink A. Lipid A Phosphoethanolamine Transferase: Regulation,
Structure and Immune Response. J. Mol. Biol. 2020; 432 (18): 5184-5196. Disponible
en: https://www.sciencedirect.com/science/article/pii/S002228362030320X | spa |
dc.relation.references | Raheem M, Xue M, Ahmad H, Ahmad M, Tipu M, Afzal G, et al. Adaptation to host
specific bacterial pathogens drive rapid evolution of novel PhoP/PhoQ regulation
pathway modulating the virulence. Microb. Pathog. 2020; 141: 103997. Disponible en:
https://doi.org/10.1016/j.micpath.2020.103997 | spa |
dc.relation.references | Cao L, Wang J, Sun L, Kong Z, Wu Q, Wang Z, et al. Transcriptional analysis reveals
the relativity of acid tolerance and antimicrobial peptide resistance of Salmonella.
Microb. Pathog. 2019; 136: 103701. Disponible en:
https://doi.org/10.1016/j.micpath.2019.103701 | spa |
dc.relation.references | Tsai M, Liang Y, Chen C, Chiu C. Characterization of Salmonella resistance to bile
during biofilm formation. J Microbiol Immunol Infect. 2020; 53 (4): 518-524. Disponible
en: https://doi.org/10.1016/j.jmii.2019.06.003 | spa |
dc.relation.references | Gunn J, Richards S. Recognition and Integration of Multiple Environmental Signals by
the Bacterial Sensor Kinase PhoQ. Cell Host Microbe. 2007; 1 (3): 163-165.
Disponible en: https://www.cell.com/fulltext/S1931-3128(07)00075-3 | spa |
dc.relation.references | Prost L, Daley M, Sage V, Bader M, Moual H, Klevit R, et al. Activation of the
Bacterial Sensor Kinase PhoQ by Acidic pH. Mol. cell. 2007; 26 (2): 165-174.
Disponible en:
https://www.sciencedirect.com/science/article/pii/S1097276507001530#:~:text=Suma
ry,transcriptional%20program%20essential%20for%20virulence.&text=PhoQ%2
also%20binds%20and%20is,sensor%20domain%20to%20pH%205.5 | spa |
dc.relation.references | Carabajal M, Asquith C, Laitinen T, Tizzard G, Yim L, Rial A, et al. Quinazoline Based
Antivirulence Compounds Selectively Target Salmonella PhoP/PhoQ Signal
Transduction System. mBio. 2020; 64 (1): e01744-19. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187569/ | spa |
dc.relation.references | Liu L, Zheng S. Transcriptional regulation of Yersinia pestis biofilm formation. Microb.
Pathog. 2019; 131: 212-217. Disponible en:
https://doi.org/10.1016/j.micpath.2019.04.011 | spa |
dc.relation.references | Erickson D, Russel C, Johnson K, Hileman T, Steward R. PhoP and OxyR
transcriptional regulators contribute to Yersinia pestis virulence and survival within
Galleria mellonella. Microb. Pathog. 2011; 51 (6): 389-395. Disponible en:
https://doi.org/10.1016/j.micpath.2011.08.008 | spa |
dc.relation.references | Bozue J, Mou S, Moody K, Cote C, Trevino S, Fritz D, Worsham P. The role of the
phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis
and the IP32953 strain of Yersinia pseudotuberculosis. Microb. Pathog. 2011; 50 (6):
314-321. Disponible en: https://doi.org/10.1016/j.micpath.2011.02.005 | spa |
dc.relation.references | Lin Z, Cai X, Chen M, Ye L, Wu Y, Wang X, et al. Virulence and Stress Responses of
Shigella flexneri Regulated by PhoP/PhoQ. Front. Microbiol. 2018; 8:2689. Disponible
en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775216/ | spa |
dc.relation.references | Nakka S, Qi M, Zhao Y. The Erwinia amylovora PhoPQ system is involved in
resistance to antimicrobial peptide and suppresses gene expression of two novel type
III secretion systems. Microbiol. Res. 2010; 165 (8): 665-673. Disponible en:
https://www.sciencedirect.com/science/article/pii/S0944501309001165?via%3Dihub | spa |
dc.relation.references | Serra M. La resistencia microbiana en el contexto actual y la importancia del
conocimiento y aplicación en la política antimicrobiana. Rev haban cienc méd. 2017;
16 (3): 1729-519. Disponible en:
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729519X20170003
00011 | spa |
dc.relation.references | ISGLOBAL. Los 4 frentes de batalla contra la resistencia a los antibióticos. [Internet].
Disponible en: https://www.isglobal.org/informe-la-batalla-contra-las-resistencias
[Consultado el 30 de enero de 2020] | spa |
dc.relation.references | Pintilie L, Stefaniu A. In Silico Drug Design and Molecular Docking Studies of Some
Quinolone Compound. Molecular Docking and Molecular Dynamics. 2019. Disponible
en:
https://www.intechopen.com/books/molecular-docking-and-molecular-dynamics/-em-i
n-silico-em-drug-design-and-molecular-docking-studies-of-some-quinolone-compoun
d | spa |
dc.relation.references | Jeukens J, Freschi J, Kukavica‐Ibrulj I, Emond J, Tucker N & Levesque R. Genomics
of antibiotic‐resistance prediction in Pseudomonas aeruginosa. Ann N Y Acad Sci.
2019; 1435(1): 5–17. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379567/ | spa |
dc.relation.references | Soukarieh F, Vico E, Dubern J, Gomes J, Halliday N, Crespo M, et al. In Silico and in
Vitro-Guided Identification of Inhibitors of Alkylquinolone-Dependent Quorum Sensing
in Pseudomonas aeruginosa. Molecules. 2018; 23(2): 257. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017655/ | spa |
dc.relation.references | Solanki V, Tiwari M & Tiwari V. Prioritization of potential vaccine targets using
comparative proteomics and designing of the chimeric multi-epitope vaccine against
Pseudomonas aeruginosa. Sci Rep. 2019; 9: 5240. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437148/ | spa |
dc.relation.references | National Center for Biotechnology Information (NCBI). Basic Local Alignment Search
Tool (BLAST). Disponible en:
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=B
lastSearch&BLAST_SPEC=&LINK_LOC=blasttab&LAS
T_PAGE=blastp | spa |
dc.relation.references | MEGA. Disponible en: https://www.megasoftware.net/ | spa |
dc.relation.references | Khan S. Árboles filogenéticos. [Internet]. Khan Academy. 2016. [citado 20 de mayo
del 2021]. Disponible en:
https://es.khanacademy.org/science/high-schoolbiology/hs-evolution/hs-phylogeny/a/
phylogenetic-trees | spa |
dc.relation.references | Martínez-Lage, A y González-Tizón, A. Aplicaciones de la bioinformática en la
elaboración de filogenias moleculares. 2004. Fundación Alfredo Brañas. 53-81.
Disponible en:
https://www.udc.es/grupos/gibe/uploads/gibe/andres%20ana/filogenias.pdf | spa |
dc.relation.references | Nei M & Kumar S. Molecular Evolution and Phylogenetics. 1 ed. New York: Oxford
University Press: 2000. | spa |
dc.relation.references | Protparam tool. Disponible en: https://web.expasy.org/protparam/ | spa |
dc.relation.references | PROSITE Database of protein domains, families and functional sites. Disponible en:
https://prosite.expasy.org/ | spa |
dc.relation.references | SWISS-MODEL. Disponible en: https://swissmodel.expasy.org/ | spa |
dc.relation.references | PSIPRED. Disponible en: http://bioinf.cs.ucl.ac.uk/psipred/ | spa |
dc.relation.references | GOR IV. Disponible en:
https://npsaprabi.ibcp.fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_gor4.html | spa |
dc.relation.references | Protein Structure Analisis Web. Disponible en:
https://prosa.services.came.sbg.ac.at/prosa.php | spa |
dc.relation.references | Jochumsen N, Marvig R, Damkkiaer S, Lyngkli p R, Paulander W, Molin S, et al.
The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is
shaped by strong epistatic interactions. Nat. Commun. 2016; 7: 13002. Disponible en:
https://www.nature.com/articles/ncomms13002 | spa |
dc.relation.references | Barrow K, Know D. Alterations in Two-Component Regulatory Systems of phoPQ
and pmrAB Are Associated with Polymyxin B Resistance in Clinical Isolates of
Pseudomonas aeruginosa. J. Clin. Microbiol. 2020; 53 (12). Disponible en:
https://journals.asm.org/doi/10.1128/AAC.00893-09 | spa |
dc.relation.references | Meng L, Liu H, Lan T, Dong L, Hu H, Zhao S, et al. Antibiotic Resistance Patterns
of Pseudomonas spp. Isolated From Raw Milk Revealed by Whole Genome
Sequencing. Front. Microbiol. 2020; 11:1005. Disponible en:
https://www.frontiersin.org/articles/10.3389/fmicb.2020.01005/full | spa |
dc.relation.references | Gutu A, Sgambati N, Strasbourger P, Brannon M, Jacobs M, Haugen E, et al.
Polymyxin Resistance of Pseudomonas aeruginosa phoQ Mutants Is Dependent on
Additional Two-Component Regulatory Systems. J. Clin. Microbiol. 2013; 57 (5).
Disponible en: https://journals.asm.org/doi/10.1128/aac.02353-12?permanently=true | spa |
dc.relation.references | Gooderham J, Hancock R. Regulation of virulence and antibiotic resistance by
two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiology
Reviews. 2009; 33 (2): 279-294. Disponible en:
https://academic.oup.com/femsre/article/33/2/279/588178 | spa |
dc.relation.references | Olaitan A, Morand S, Rolain J. Mechanisms of polymyxin resistance: acquired
and intrinsic resistance in bacteria. Front. Microbiol. 2014; 5:643.Disponible en:
https://www.frontiersin.org/articles/10.3389/fmicb.2014.00643/full | spa |
dc.relation.references | Miller A, Brannon M, Stevens L, Krogh H, Selgrade S, Miller S, et al. PhoQ
Mutations Promote Lipid A Modification and Polymyxin Resistance of Pseudomonas
aeruginosa Found in Colistin-Treated Cystic Fibrosis Patients. Antimicrob Agents
Chemother. 2011; 55(12): 5761–5769. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232818/ | spa |
dc.relation.references | Molina L, Udaondo Z, Duque E, Fernández M, Molina M, Roca A, et al. Antibiotic
Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital.
PloS one. 2014. Disponible en:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081604 | spa |
dc.relation.references | Macfarlane E, Kwasnicka A, Ochs M, Hancock R. PhoP–PhoQ homologues in
Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH
and polymyxin B resistance. Mol. Microbiol. 2002; 34 (2): 305-316. Disponible en:
https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2958.1999.01600.x | spa |
dc.relation.references | Francis V, Stevenson E, Porter S. Two-component systems required for virulence
in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2017; 364(11): fnx104. Disponible
en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812489/ | spa |
dc.relation.references | McPhee K, Lewenza S, Hanckock R. Cationic antimicrobial peptides activate a
two-component regulatory system, PmrA-PmrB, that regulates resistance to
polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol.
Microbiol. 2003; 50 (1): 205-217. Disponible en:
https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2958.2003.03673.x | spa |
dc.relation.references | McPhee J, Bains M, Winsor G, Lewenza S, Brazas M, Brinkman F, et al.
Contribution of the PhoP-PhoQ and PmrA-PmrB Two-Component Regulatory
Systems to Mg2+-Induced Gene Regulation in Pseudomonas aeruginosa. J Bacteriol.
2006; 188(11): 3995–4006. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482896/ | spa |
dc.relation.references | Olaitan A, Morand S, Rolain J. Mechanisms of polymyxin resistance: acquired
and intrinsic resistance in bacteria. Front. Microbiol. 2014; 5:643. Disponible en:
https://www.frontiersin.org/articles/10.3389/fmicb.2014.00643/full | spa |
dc.relation.references | Prost L, Daley M, Bader M, Klevit Miller S. The PhoQ Histidine Kinases of
Salmonella and Pseudomonas spp. are Structurally and Functionally Different:
Evidence that pH and Antimicrobial Peptide Sensing Contribute to Mammalian
Pathogenesis. Mol Microbiol. 2008; 69(2): 503–519. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2555970/ | spa |
dc.relation.references | Gunn J. The Salmonella PmrAB regulon: lipopolysaccharide modifications,
antimicrobial peptide resistance and more. Trends Microbiol. 2008; 16 (6): 284-290.
Disponible en: https://sci-hub.se/https://doi.org/10.1016/j.tim.2008.03.007 | spa |
dc.relation.references | Gellatly S. Regulation of the PhoQ-PhoP two-component system in Pseudomonas
aeruginosa and its role in virulence. [Doctoral]. University of Victoria; 2012. | spa |
dc.relation.references | Brinkman F, MacFarlane E, Warrener P, Hancock R. Evolutionary Relationships
among Virulence-Associated Histidine Kinases. Infect Immun. 2001; 69(8):
5207–5211. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC98623/ | spa |
dc.relation.references | Molnar K, Bonomi M, Pellarin R, Clinthorne G, Gonzalez G, Goldberg S, et al.
Cys-scanning Disulfide crosslinking and Bayesian modeling probe the
transmembrane signaling mechanism of the histidine kinase, PhoQ. Structure. 2014;
22(9): 1239–1251. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322757/ | spa |
dc.relation.references | Lesley J, Waldburger C. Comparison of the Pseudomonas aeruginosa
andEscherichia coli PhoQ Sensor Domains. J. Biol. Chem. 2001; 276 (33): P30827-
30833. Disponible en: https://www.jbc.org/article/S0021-9258(20)80227-/fulltext#fig1 | spa |
dc.relation.references | Matamouros S, Hager K, Miller S. HAMP Domain Rotation and Tilting Movements
Associated with Signal Transduction in the PhoQ Sensor Kinase. mBio. 2015; 6(3):
e00616. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447245/ | spa |
dc.relation.references | Stock A, Robinson V, Goudreau P. Two-Component Signal Transduction.
Biochemistry. 2000; 69:183-215. Disponible en:
https://www.annualreviews.org/doi/10.1146/annurev.biochem.69.1.183 | spa |
dc.relation.references | Velikova N, Fulle S, Manso A, Mechkarska M, Finn P, Conlon J, et al. Putative
histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical
isolates identified by in vitro and in silico screens. Sci Rep. 2016; 6: 26085.
Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865847/ | spa |
dc.relation.references | Viarengo G. Identificación y caracterización de compuestos antibacterianos a
partir de productos naturales o semisintéticos. [Doctoral]. Universidad Nacional del
Litoral; 2015. | spa |
dc.relation.references | Cheung J, Hendrickson W. Sensor Domains of Two-Component Regulatory
Systems. Curr Opin Microbiol. 2010; 13(2): 116–123. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078554/ | spa |
dc.relation.references | Ahmad A, Fadel F, Kreuzer C, Ba M, Pélissier G, Bornet O, et al. Structural and
functional insights into the periplasmic detector domain of the GacS histidine kinase
controlling biofilm formation in Pseudomonas aeruginosa. Sci Rep. 2017; 7: 11262.
Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595915/ | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Pseudomonas aeruginosa | spa |
dc.subject.proposal | Sistema de dos componentes | spa |
dc.subject.proposal | PhoQ | spa |
dc.subject.proposal | PhoP | spa |
dc.subject.proposal | MDR | spa |
dc.subject.proposal | Sensibilidad | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |