Mostrar el registro sencillo del ítem
Empleo de las Bacterias Ácido Lácticas (BAL) en el campo médico: Una alternativa a la prevención de enfermedades digestivas
dc.contributor.advisor | López López, Yalile Ibeth | |
dc.contributor.author | Bulla Cantor, Paula Valentina | |
dc.contributor.author | Carreño Torres, Verónica | |
dc.date.accessioned | 2024-04-10T17:41:58Z | |
dc.date.available | 2024-04-10T17:41:58Z | |
dc.date.issued | 2023-04 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6698 | |
dc.description.abstract | El tracto gastrointestinal (TGI) es un sistema conformado por diversos órganos de gran importancia que intervienen en la absorción y metabolismo de nutrientes para la obtención de energía de todas las células del cuerpo humano a partir de los alimentos. Las bacterias ácido lácticas (BAL) son un grupo de bacterias usadas principalmente en la industria ya que estas confieren propiedades importantes en cuanto a sus capacidades en la fermentación de ciertos alimentos, además de alargar la preservación de los alimentos y mejorar las propiedades organolépticas de estos; es de importancia resaltar que estas bacterias no solo pueden ser utilizadas a nivel industrial ya que diversos estudios han mencionado que estas bacterias pueden traer beneficios en la salud del ser humano y presentan una relación estrecha con el TGI mejorando la salud intestinal a través de diversos mecanismos y funciones que pueden contribuir a la prevención y mejora de enfermedades digestivas que aquejan a la sociedad. En esta revisión se describen los principales mecanismos de acción que ejercen estas bacterias frente a la salud intestinal del ser humano y se sugiere seguir con la investigación de estas para lograr un buen desarrollo y funcionamiento intestinal, evitando la ingesta de fármacos de manera inapropiada y consigo la posible resistencia por parte de distintos microorganismos a estos. | spa |
dc.description.tableofcontents | Tabla de contenido Pág. Resumen 6 Introducción 7 Planteamiento del problema 9 Pregunta Problema 10 Objetivos 10 1. Antecedentes 11 2. Tracto Gastrointestinal 15 3. Bacterias ácido lácticas 18 3.1 Descripción de enfermedades digestivas que pueden ser tratadas con BAL 22 4. Mecanismos de las BAL beneficiosas en la salud humana 25 4.1 Exopolisacáridos (EPS) 25 4.2 Bacteriocinas 27 5. Diseño metodológico 29 5.1 Tipo de investigación 29 5.2 Población 29 5.3 Criterios de exclusión 29 5.4 Criterios de inclusión 29 5.5 Proceso de Selección 29 5.6 Proceso de recogida de datos 29 5.7 Estrategia de búsqueda 30 6. Resultados 31 7. Discusión 35 8. Conclusiones 38 9. Referencias bibliográficas 40 | spa |
dc.format.extent | 49p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | Empleo de las Bacterias Ácido Lácticas (BAL) en el campo médico: Una alternativa a la prevención de enfermedades digestivas | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.contributor.corporatename | Universidad Colegio Mayor de Cundinamarca | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Shokryazdan P, Jahromi M, Liang J, Wan Ho Y. Probiotics: From Isolation to Application. Journal of the American College of Nutrition. [Internet]. 2017 [Cited 12 may 2022] Available in: https://sci-hub.se/https://pubmed.ncbi.nlm.nih.gov/28937854/ | spa |
dc.relation.references | Asmaa N, Azza N, Einas H, Ghada A, Mohamed K, et al. Assessment of exopolysaccharides, bacteriocins and in vitro and in vivo hypocholesterolemic potential of some Egyptian Lactobacillus spp. International journal of biological macromolecules. [Internet]. 2021 [Cited 18 may 2022];173; 66-78. Available in: https://www.sciencedirect.com/science/article/abs/pii/S0141813021001380?via%3Dihub | spa |
dc.relation.references | Beghetti I, Panizza D, Lenzi J, Gori D, Martini S, Corvaglia L, et al. Probiotics for preventing necrotizing enterocolitis in preterm infants: A network meta-analysis. Nutrients [Internet]. 2021;13(1):192 [Cited 18 may 2022].Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827781/ | spa |
dc.relation.references | Netdna-ssl.com. [citado el 19 de octubre de 2022]. Disponible en:https://4cau4jsaler1zglkq3wnmje1-wpengine.netdna-ssl.com/wp-content/uploads/2021/01/ProbioticsNEC_Spanish.pdf | spa |
dc.relation.references | Eom T, Kim YS, Choi CH, Sadowsky MJ, Unno T. Current understanding of microbiota- and dietary-therapies for treating inflammatory bowel disease. J Microbiol [Internet]. 2018;56(3):189–98. [Cited 18 may 2022] Available in:https://sci-hub.se/https://link.springer.com/article/10.1007/s12275-018-8049-8 | spa |
dc.relation.references | Palig.com. [citado el 29 de marzo de 2023]. Disponible en: https://www.palig.com/Media/Default/Documents/Enfermedades%20y%20Afecciones%20Gastrointestinales.pdf | spa |
dc.relation.references | Sánchez MT, Ruiz MA, Morales ME. Microorganismos probióticos y salud. Ars Pharm [Internet]. 2015 ;56(1):45–59. [Cited 18 may 2022] Available in: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S2340-98942015000100007#:~:text=Actualmente%2C%20tras%20numerosas%20redefiniciones%2C%20la,se%20administran%20en%20cantidad%20adecuada%22. | spa |
dc.relation.references | Probióticos. Concepto y mecanismos de acción [Internet]. Analesdepediatria.org. [Cited 18 may 2022] Available in:https://www.analesdepediatria.org/es-pdf-13092364 | spa |
dc.relation.references | Mokoena P, Taurai M, Ademola O. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages. Food & Nutrition research. [Internet]. 2016 [Cited 18 may 2022];60. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785221/ | spa |
dc.relation.references | Yong S, Tae Y, Yeji K, Nobuhiko K, Nan G, et al. Microbiota-Derived Lactate Accelerates Intestinal Stem-Cell-Mediated Epithelial Development. Cell Host & Microbe. [Internet]. 2018 [Cited 12 may 2022];24 (6); 833-846. Available in: https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(18)30559-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312818305596%3Fshowall%3Dtrue | spa |
dc.relation.references | Benavides A, Ulcuango M, Yépez L, Tenea G. Assessment of the in vitro bioactive properties of lactic acid bacteria isolated from native ecological niches of Ecuador. ScienceDirect. [Internet]. 2016 [Cited 17 sep 2021]; 48(3): 236-244. Available in: https://www.sciencedirect.com/science/article/pii/S032575411630044X | spa |
dc.relation.references | Jeong J, Lee C, Chung D. Probiotic Lactic Acid Bacteria and Skin Health. Crit Rev Food Sci Nutr. [Internet]. 2016 [Cited 17 de sep 2021]; 56(14): 2331-2337. Available in: https://www.tandfonline.com/doi/abs/10.1080/10408398.2013.834874?journalCode=bfsn20 | spa |
dc.relation.references | Riaz MS, Shi J, Zhu J, Shao D, Huang Q, Yang H, et al. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl Microbiol Biotechnol [Internet].2017 [Cited 17 de sep de 2021];101 (1): 35-45.Available in: https://link.springer.com/article/10.1007%2Fs00253-016-8005-7 | spa |
dc.relation.references | Ruiz MJ, Colello R, Padola N, Etcheverría A. Efecto inhibitorio de Lactobacillus spp. sobre bacterias implicadas en enfermedades transmitidas por alimentos. ScienceDirect [Internet].2017 [Citado 20 de sep de 2021]; 49(2): 174-177. Disponible en: https://www.sciencedirect.com/science/article/pii/S032575411630116X | spa |
dc.relation.references | Mokoena P. Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules[Internet].2017 [Cited 22 sep 2021]; 22(8): 1255. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152299/ | spa |
dc.relation.references | Kimoto-Nira H. New lactic acid bacteria for skin health via oral intake of heat‐killed or live cells. Anim Sci J.[Internet].2018 [Cited 23 sep 2021];89(6): 835–842. Available in : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001785/ | spa |
dc.relation.references | Karol RH, Chen L, Dishisha T, Enhasy H. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiology Letters.[Internet].2018 [Cited 24 sep 2021]; 365(20). Available in: https://academic.oup.com/femsle/article/365/20/fny213/5087731#122875524 | spa |
dc.relation.references | Dallagnol A, Bustos AY, Martos GI, Font de Valdez G, Gerez C. Antifungal and antimycotoxigenic effect of Lactobacillus plantarum CRL 778 at different water activity values. Revista Argentina de Microbiología.[Internet].2018[Cited 28 oct 2021]; 51 (2): 164-169. Available in: https://www.sciencedirect.com/science/article/pii/S0325754118300580 | spa |
dc.relation.references | Colombo M, Castilho Nathália. Todorov S, Nero L. Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiology. [Internet].2018[Cited 28 oct 2021]; 18. Available in: https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-018-1356-8#citeas | spa |
dc.relation.references | Gao Z, Daliri E, Wang J, Liu D, Chen S. Inhibitory Effect of Lactic Acid Bacteria on Foodborne Pathogens: A Review. Journal of food protection. [Internet].2019[Cited 01 nov 2021]; 82 (3): 441-453. Available in: https://meridian.allenpress.com/jfp/article-abstract/82/3/441/10136/Inhibitory-Effect-of-Lactic-Acid-Bacteria-on?redirectedFrom=fulltext | spa |
dc.relation.references | García I. Rocha D. Ortega J. Wang K. Kosmerl E. Jiménez R. Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins. Appl Microbiol Biotechnol. [Internet].2019[Cited 01 nov 2021];103: 5243–5257. Available in: https://link.springer.com/article/10.1007%2Fs00253-019-09844-6 | spa |
dc.relation.references | Thakkar P., Patel, A., Modi, H. Prajapati J. Hypocholesterolemic Effect of Potential Probiotic Lactobacillus fermentum Strains Isolated from Traditional Fermented Foods in Wistar Rats. Probiotics and antimicrobial proteins. [Internet].2019[Cited 01 nov 2021]; 12: 1002–1011. Available in: https://link.springer.com/article/10.1007%2Fs12602-019-09622-w#citeas | spa |
dc.relation.references | Filippis F. Pasolli E. Ercolini D. The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. FEMS Microbiology Reviews. [Internet].2020[Cited 01 nov 2021]; 44: 454–489. Available in: https://academic.oup.com/femsre/article/44/4/454/5859486 | spa |
dc.relation.references | Angelin J, Kavitha M. Exopolysaccharides from probiotic bacteria and their health potential. Elsevier. [Internet].2020[Cited 01 nov 2021]; 162: 853-865. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308007/ | spa |
dc.relation.references | Funcionamiento S. Nih.gov. [Cited 26 may 2022]. Available in: https://www.niddk.nih.gov/-/media/Files/Enfermedades-Digestivas/yrdd_sp_508.pdf 26. Hartenstein V, Martinez P. Structure, development and evolution of the digestive system. Cell Tissue Res [Internet]. 2019;377(3):289–92. [Cited 26 may 2022]. Available in: https://link.springer.com/article/10.1007/s00441-019-03102-x | spa |
dc.relation.references | Boland M. Human digestion--a processing perspective: Human digestion - a processing perspective. J Sci Food Agric [Internet]. 2016;96(7):2275–83.[Cited 26 may 2022]. Available in: https://sci-hub.se/https://onlinelibrary.wiley.com/doi/10.1002/jsfa.7601 | spa |
dc.relation.references | Brunser O., Cruchet S., Gotteland M. Fisiología gastrointestinal y nutrición. Chile. Nestlé Chile S.A.2013 [Cited 26 may 2022]. | spa |
dc.relation.references | Guarner F. Papel de la flora intestinal en la salud y en la enfermedad. Nutr Hosp [Internet]. 2007 [cited el de 2022];22:14–9. Available in: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112007000500003 | spa |
dc.relation.references | Parra R. Review. Bacterias Ácido Lácticas: Papel funcional en los alimentos. Scielo.[Internet]. 2010 [cited el de 2022];8. Available in:http://www.scielo.org.co/pdf/bsaa/v8n1/v8n1a12.pdf | spa |
dc.relation.references | Daba G, Elnahas M, Elkhateeb W.Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. International Journal of Biological Macromolecules, vol 1. [Internet]. 2021. [Cited 26 may 2022]. Available in: https://www.sciencedirect.com/science/article/abs/pii/S0141813021001410?via%3Dihub | spa |
dc.relation.references | Piqué N, Berlanga M, Miñana-Galbis D. Health benefits of heat-killed (tyndallized) probiotics: An overview. Int J Mol Sci [Internet]. 2019;20(10):2534.[Cited 26 may 2022]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566317/ | spa |
dc.relation.references | Saez-Lara MJ, Gomez-Llorente C, Plaza-Diaz J, Gil A. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. Biomed Res Int [Internet]. 2015;2015:505878. [Cited 26 may 2022]. Available in: https://pubmed.ncbi.nlm.nih.gov/25793197/ | spa |
dc.relation.references | Oh NS, Joung JY, Lee JY, Kim Y. Potencial probiótico y antiinflamatorio de Lactobacillus rhamnosus 4B15 y Lactobacillus gasseri 4M13 aislados de heces infantiles. PLoS Uno [Internet]. 2018;13(2):e0192021.[Cited 26 may 2022]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812581/ | spa |
dc.relation.references | Riaz Rajoka MS, Jin M, Haobin Z, Li Q, Shao D, Jiang C, et al. Caracterización funcional y potencial biotecnológico de exopolisacáridos producidos por cepas de Lactobacillus rhamnosus aisladas de leche materna humana. Lebenson Wiss Technol [Internet]. 2018;89:638–47. [Cited 26 may 2022]. Available in: https://www.sciencedirect.com/science/article/pii/S0023643817308538 | spa |
dc.relation.references | You X, Yang L, Zhao X, Ma K, Chen X, Zhang C, et al. Isolation, purification, characterization and immunostimulatory activity of an exopolysaccharide produced by Lactobacillus pentosus LZ-R-17 isolated from Tibetan kefir. Int J Biol Macromol [Internet]. 2020;158:408–19. [Cited 26 may 2022]. Available in: https://www.sciencedirect.com/science/article/pii/S014181302033172X?via%3Dihub | spa |
dc.relation.references | Ale EC, Bourin MJ-B, Peralta GH, Burns PG, Ávila OB, Contini L, et al. Functional properties of exopolysaccharide (EPS) extract from Lactobacillus fermentum Lf2 and its impact when combined with Bifidobacterium animalis INL1 in yoghurt. Int Dairy J [Internet]. 2019;96:114–25. [Cited 26 may 2022]. Available in: http://dx.doi.org/10.1016/j.idairyj.2019.04.014 | spa |
dc.relation.references | Bhat B, Bajaj BK. Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from kalarei. Bioresour Technol [Internet]. 2018;254:264–7.[Cited 26 may 2022]. Available in: http://dx.doi.org/10.1016/j.biortech.2018.01.078 | spa |
dc.relation.references | Jiayi W, Yuheng Z, Ling Y, Chenglin W, The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review. Elsevier. [Internet]. 2021[Cited 26 may 2022];253. Available in:https://www.sciencedirect.com/science/article/abs/pii/S0144861720314818?via%3Dihub | spa |
dc.relation.references | El-Dein A, El-Deen A, El-Shatoury E, Awad G, Ibrahim M, Awad H, et al. Assessment of exopolysaccharides, bacteriocins and in vitro and in vivo hypocholesterolemic potential of some Egyptian Lactobacillus spp. Int J Biol Macromol, vol. 173. [Internet]. 2021.[Cited 26 may 2022]. Available in: https://www.sciencedirect.com/science/article/abs/pii/S0141813021001380?via%3Dihub | spa |
dc.relation.references | Zheng Z., Cao F., Wang W., Yu J., Chen C., Chen B., et al. Probiotic characteristics of Lactobacillus plantarum E680 and its effect on Hypercholesterolemic mice. BMC Microbiology. vol 20. [Internet]. 2020. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401229/ | spa |
dc.relation.references | Hernández J., Martínez A., Lazcano G., García B., Castrejón N. Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals (Basel). vol 11. [Internet]. 2021. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067144/ | spa |
dc.relation.references | Brandi, J., Cheri, S., Manfredi, M., Di Carlo C., Vita V., Federici F., et al. Exploring the wound healing, anti-inflammatory, anti-pathogenic and proteomic effects of lactic acid bacteria on keratinocytes. Scientific reports. vol 10. [Internet]. 2020. Available in: https://www.nature.com/articles/s41598-020-68483-4 | spa |
dc.relation.references | Mokoena, M. Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. [Internet]. 2017. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152299/ | spa |
dc.relation.references | Filippis, F. Pasolli, E. Ercolini, D. The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. [Internet]. 2020. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391071/ | spa |
dc.relation.references | Holscher, H. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. Vol 8. [Internet]. 2017. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390821/ | spa |
dc.relation.references | Chengcheng R, Marijke M, Vos P. Disease managing capacities and mechanisms of host effects of lactic acid bacteria. Critical Reviews in Food Science and Nutrition.[Internet]. 2020. Available in: https://sci-hub.hkvisa.net/10.1080/10408398.2020.1758625 | spa |
dc.relation.references | Chaoran L,Jiaqi Z, Xuan O, Yuzhu H, Anti-cancer Substances and Safety of Lactic Acid Bacteria in Clinical Treatment. Front. Microbiol..[Internet]. 2021. Available in: https://www.frontiersin.org/articles/10.3389/fmicb.2021.722052/full | spa |
dc.relation.references | Jain L. Why Our Gastrointestinal Tract Is So Important. Neonatal Gastroenterology: Challenges, Controversies, and Recent Advances.[Internet]. 2020. Available in: https://sci-hub.ee/10.1016/j.clp.2020.04.003 | spa |
dc.relation.references | Oldak A, Zielinska D. Bacteriocins from lactic acid bacteria as an alternative to antibiotics. Postepy Hig Med Dosw (Online). [Internet]. 2017;5;71:328-338. Available in:https://pubmed.ncbi.nlm.nih.gov/28513457/ | spa |
dc.relation.references | Kieliszek M, Pobiega K, Piwowarek K, Kot A, Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. [Internet]. 2021; 25;26:1858. Available in:https://pubmed.ncbi.nlm.nih.gov/33806095/ | spa |
dc.relation.references | Mokoena P,Mutanda T, Olaniran A. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages. Food Nutr Res.[Internet]. 2016;60. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785221/ | spa |
dc.relation.references | Zeise K,Woods R, Huffnagle G. Interplay between Candida albicans and Lactic Acid Bacteria in the Gastrointestinal Tract: Impact on Colonization Resistance, Microbial Carriage, Opportunistic Infection, and Host Immunity. Clin Microbiol rev. [Internet]. 2021;34. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404691/ | spa |
dc.relation.references | Greenwood B, Meerveld V, Johnson A, Grundy D. Gastrointestinal Physiology and Function. Gastrointestinal Pharmacology. [Internet]. 2017;239. Available in: https://sci-hub.ee/10.1007/164_2016_118 | spa |
dc.relation.references | Takiishi T, Morales C, Saraiva N. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers. [Internet]. 2017;5. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788425/ 56. Motta J, Wallace J, Buret A, Deraison C, Vergnolle N. Gastrointestinal biofilms in health and disease. Nature Reviews. [Internet]. 2021;18. Available in: https://sci-hub.ee/10.1038/s41575-020-00397-y | spa |
dc.relation.references | Ruan W, Engevik M, Spinler J, Versalovic J. Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Digestive Diseases and Sciences. [Internet]. 2020 Available in: https://sci-hub.ee/10.1007/s10620-020-06118-4 | spa |
dc.relation.references | Sartor RB. The influence of normal microbial flora on the development of chronic mucosal inflammation. Res Immunol [Internet]. 1997;48:567–76. Available in: https://www.ncbi.nlm.nih.gov/books/NBK7617/ | spa |
dc.relation.references | Gorbach SL. Microbiology of the gastrointestinal tract. En: Medical Microbiology 4th edition. University of Texas Medical Branch at Galveston; 1996. Available in: https://www.ncbi.nlm.nih.gov/books/NBK7670/ | spa |
dc.relation.references | Agriopoulou S, Stamatelopoulou E, Sachadyn-Król M, Varzakas T. Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms [Internet]. 2020;8(6):952. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356186/ | spa |
dc.relation.references | Miranda C, Contente D, Igrejas G, Câmara S, Dapkevicius M, et al. Role of exposure to lactic acid bacteria from foods of animal origin in human health. Foods [Internet]. 2021;10(9):2092. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471122/ | spa |
dc.relation.references | Vamanu E. Effect of gastric and small intestinal digestion on lactic acid bacteria activity in a GIS1 simulator. Saudi J Biol Sci [Internet]. 2017;24(7):1453–7[Cited 26 may 2022]. Available in: .https://www.sciencedirect.com/science/article/pii/S1319562X15001618 | spa |
dc.relation.references | Phan CT, Tso P. Intestinal lipid absorption and transport. Front Biosci [Internet]. 2001;6(1):D299-319.[Cited 26 may 2022]. Available in: https://sci-hub.se/https://pubmed.ncbi.nlm.nih.gov/11229876/ | spa |
dc.relation.references | Actamedicacolombiana.com.[Cited 26 may 2022]. Available in: http://www.actamedicacolombiana.com/anexo/articulos/02-1979-04.pdf | spa |
dc.relation.references | Stevens SL. Fat-soluble vitamins. Nurs Clin North Am [Internet]. 2021;56(1):33–45. [Cited 26 may 2022]. Available in: https://sci-hub.se/https://www.sciencedirect.com/science/article/abs/pii/S0029646520300815?via%3Dihub / http://dx.doi.org/10.1016/j.cnur.2020.10.003 | spa |
dc.relation.references | Said HM. Intestinal absorption of water-soluble vitamins in health and disease. Biochem J [Internet]. 2011;437(3):357–72.[Cited 26 may 2022]. Available in: https://pubmed.ncbi.nlm.nih.gov/21749321/ | spa |
dc.relation.references | Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev [Internet]. 2014;38(5):996–1047.[Cited 26 may 2022]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262072/ | spa |
dc.relation.references | Rodríguez-López CM, Guzmán-Beltrán AM, Lara-Morales MC, Castillo E, Brandão PFB. AISLAMIENTO E IDENTIFICACIÓN DE Lactobacillus spp. (LACTOBACILLACEAE) RESISTENTES A Cd(II) Y As(III) RECUPERADOS DE FERMENTO DE CACAO. Acta Biolo Colomb [Internet]. 2020;26(1):19–29.[Cited 26 may 2022]. Available in: http://www.scielo.org.co/pdf/abc/v26n1/0120-548X-abc-26-01-19.pdf | spa |
dc.relation.references | Mathur H, Beresford TP, Cotter PD. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients [Internet]. 2020;12(6):1679.[Cited 26 may 2022]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352953/ | spa |
dc.relation.references | Şanlier N, Gökcen BB, Sezgin AC. Health benefits of fermented foods. Crit Rev Food Sci Nutr [Internet]. 2019;59(3):506–27. [Cited 26 may 2022]. Available in: https://pubmed.ncbi.nlm.nih.gov/28945458/ | spa |
dc.relation.references | Ołdak A, Zielińska D. Bacteriocins from lactic acid bacteria as an alternative to antibiotics. Postepy Hig Med Dosw [Internet]. 2017;71(0):328–38.[Cited 26 may 2022]. Available in: https://pubmed.ncbi.nlm.nih.gov/28513457/ | spa |
dc.relation.references | Taye Y, Degu T, Fesseha H, Mathewos M. Isolation and identification of lactic acid bacteria from cow milk and milk products. ScientificWorldJournal [Internet]. 2021;2021:4697445.[Cited 26 may 2022]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371643/ | spa |
dc.relation.references | Jantararussamee C, Rodniem S, Taweechotipatr M, Showpittapornchai U, Pradidarcheep W. Hepatoprotective effect of probiotic lactic acid bacteria on thioacetamide-induced liver fibrosis in rats. Probiotics Antimicrob Proteins [Internet]. 2021;13(1):40–50. [Cited 26 may 2022]. Available in: https://pubmed.ncbi.nlm.nih.gov/32468435/ | spa |
dc.relation.references | Morata de Ambrosini V, Gonzalez S, de Ruiz Holgado AP, Oliver G. Study of the morphology of the cell walls of some strains of lactic acid bacteria and related species. J Food Prot [Internet]. 1998;61(5):557–62.[Cited 26 may 2022]. Available in: https://pubmed.ncbi.nlm.nih.gov/9709227/ | spa |
dc.relation.references | Human digestive system - Absorption. En: Encyclopedia Britannica.[Cited 26 may 2022]. Available in: https://www.britannica.com/science/human-digestive-system/Absorption | spa |
dc.relation.references | Compare D, Sgamato C, Nardone O, Rocco A, Coccoli P, Laurenza C, Nardone G. Probiotics in Gastrointestinal Diseases:All that Glitters Is Not Gold. Karger. Dig Dis. 2022;40(1):123-132. [Internet]. Disponible en: https://www.karger.com/Article/Pdf/516023 | spa |
dc.relation.references | Wilkins T, Sequoia J. Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. American Family Physician. 2017;96(3):170-178. [Internet]. Disponible en: https://www.aafp.org/pubs/afp/issues/2017/0801/p170.html | spa |
dc.relation.references | Khorshidian N, Khanniri E, Mohammadi M, Mortazavian AM, Yousefi M. Antibacterial activity of pediocin and pediocin-producing bacteria against listeria monocytogenes in meat products. Front Microbiol [Internet]. 2021;12:709959. Disponible en: http://dx.doi.org/10.3389/fmicb.2021.709959 | spa |
dc.relation.references | Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog [Internet]. 2019;128:171–7. Disponible en: https://www.sciencedirect.com/science/article/pii/S088240101831828X | spa |
dc.relation.references | Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol. [Internet]. 2016;100(7):2939–51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786598/ | spa |
dc.relation.references | Heredia P, Hernandez A, Gonzalez A, Vallejo B. Bacteriocinas de bacterias ácido lácticas: mecanismos de acción y actividad antimicrobiana contra patógenos en quesos. Interciencia. Vol. | spa |
dc.relation.references | núm. 6, pp. 340-346, 2017. [Internet]. 2016;100(7):2939–51. Disponible en: https://www.redalyc.org/journal/339/33951621002/html/ | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Bacterias Ácido Lácticas (BAL) | spa |
dc.subject.proposal | Exopolisacáridos | spa |
dc.subject.proposal | Tracto Gastrointestinal | spa |
dc.subject.proposal | Bacteriocinas | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |