Mostrar el registro sencillo del ítem
Efecto de la salinidad sobre el conteo de genes asociados a microorganismos de estrés ambiental en un manglar semiárido del departamento de la Guajira.
dc.contributor.advisor | Vanegas Guerrero, Javier | |
dc.contributor.advisor | Rosas Arango, Sonia Marcela | |
dc.contributor.author | Bonilla Amaya, Hasbleidy | |
dc.contributor.author | López Mosquera, Ensi Yaniari | |
dc.date.accessioned | 2022-10-05T16:02:31Z | |
dc.date.available | 2022-10-05T16:02:31Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/5681 | |
dc.description.abstract | Los manglares soportan diferentes tensiones por contaminación, nutrientes y fluctuantes cambios de oxígeno y salinidad. En zonas semiáridas, las tensiones se incrementan por los bajos niveles de precipitación, altas temperaturas y radiación. Los microorganismos de estos ecosistemas están adaptados a estas condiciones, sin embargo, son limitados los trabajos de metagenómica que han estudiado la presencia de estos genes en este ecosistema. El objetivo que persigue la presente investigación fue determinar el efecto de la salinidad sobre el recuento de genes asociados a proteínas de estrés en microorganismos de un manglar semiárido del departamento de la Guajira; para ello se obtuvieron muestras de suelo rizosférico concentradas en tres áreas con salinidades contrastantes en el (brazo Riito) del río Ranchería en la Guajira, el ADN total se extrajo y se secuenció mediante Illumina HiSeq 2500. Se detectaron 620 genes asociados a las rutas transportadoras ABC, quorum sensing, recombinación homóloga, sistema secreción bacteriana, respondedoras de estrés, base escisión de reparación (BER) y proteínas de choque térmico, de ellos UNG, ERCC3, XPB, ClpB, xseA, holA, livF estuvieron influenciados por la salinidad alta, GroES, HSPE1, clpA, tres a la media y recC, recA, ClpB, recC, proV a la baja, principalmente asociados a mecanismos de bases de escisión de reparación, choque térmico y reparación por escisión de nucleótidos respectivamente. Finalmente los resultados revelan la influencia de la salinidad sobre las rutas metabólicas que contribuyen a entender la dinámica funcional de proteínas de estrés ambiental del manglar. | spa |
dc.description.abstract | Mangroves withstand different stresses from pollution, nutrients, and fluctuating changes in oxygen and salinity. In semi-arid zones, stresses are increased by low levels of precipitation, high temperatures and radiation. The microorganisms of these ecosystems are adapted to these conditions; however, there is limited metagenomic work that has studied the presence of these genes in this ecosystem. The objective of this research was to determine the effect of salinity on the count of genes associated with stress proteins in microorganisms of a semi-arid mangrove in the department of Guajira; for this purpose, rhizospheric soil samples were obtained from three areas with contrasting salinities in the Riito arm of the Rancheria river in Guajira, the total DNA was extracted and sequenced using Illumina HiSeq 2500. A total of 620 genes associated with ABC transporter pathways, quorum sensing, homologous recombination, bacterial secretion system, stress responders, base excision repair (BER) and heat shock proteins were detected, of which UNG, ERCC3, XPB, ClpB, xseA, holA, livF were influenced by high salinity, GroES, HSPE1, clpA, three at medium and recC, recA, ClpB, recC, proV at low, mainly associated with base excision repair, heat shock and nucleotide excision repair mechanisms respectively. Finally, the results reveal the influence of salinity on metabolic pathways that contribute to understand the functional dynamics of mangrove environmental stress proteins. | eng |
dc.description.tableofcontents | TABLA DE CONTENIDO RESUMEN 10 INTRODUCCIÓN. 12 1. OBJETIVOS 16 1.1 Objetivo general 16 1.2 Objetivo específicos 16 2. ANTECEDENTES 17 3. MARCO REFERENCIAL 20 3.1 Manglar 20 3.2 Proteínas de estrés asociados a microorganismos 21 3.3 Base de escisión de reparación (BER) asociados a microorganismos 21 3.4 Reparación por escisión de nucleótidos (NER) asociados a microorganismos 22 3.5 Reparación de errores de emparejamiento de ADN (MMR) asociados a microorganismos 22 3.6. Recombinación homóloga (NHEJ) asociados a microorganismos 22 3.7 Sistema de secreción bacteriana asociados a microorganismos 23 3.8 Estrés por sequía asociados a microorganismos 23 3.9 Ruta transportadores de ABC asociados a microorganismos. 24 3.10 Quorum sensing asociados a microorganismos. 24 3.11 Estrés oxidativo asociados a microorganismos. 26 3.12 Proteínas de shock térmico asociados a microorganismos. 26 4. DISEÑO METODOLÓGICO 28 4.1 Universo 28 4.1.1 Población 28 4.1.2 Muestra 28 4.2 Hipótesis 28 4.2.1 Variable dependiente 28 4.2.2 Variable independiente 28 6 4.2.3 Indicador 28 4.2.4 Tipo de investigación. 28 4.3 TÉCNICAS Y PROCEDIMIENTOS 29 4.3.1 Descripción del lugar de estudio 29 4.3.2 Extracción de ADN y secuenciación de las muestras 30 4.3.3 Análisis bioinformático y bioestadístico 30 5. RESULTADOS 31 5.1 Ruta transportadores ABC 32 5.2 Quorum sensing. 32 5.3 Recombinación homóloga. 33 5.4 Sistema de secreción bacteriana 34 5.5 Respondedoras de estrés 35 5.6 Reparación de escisión de base (BER) 36 5.7 Reparación de errores de emparejamiento de ADN (MMR) 36 5.8 Reparación por escisión de nucleótidos (NER) 37 5.9 Oxidasa. 38 5.10 Estrés salino. 39 5.11 Esterasa 39 5.12 Chaperonas 40 5.13 Estrés universal 41 5.14 Proteína de choque térmico 41 5.15 Unión de extremos no homólogos (NHEJ) 42 5.16 Superóxido dismutasa 43 6. DISCUSIÓN 44 Sistema respondedoras de estrés asociadas a microorganismos 49 7. CONCLUSIÓN 51 7.1 REFERENCIAS BIBLIOGRÁFICAS 52 7 | spa |
dc.format.extent | 65p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022 | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Efecto de la salinidad sobre el conteo de genes asociados a microorganismos de estrés ambiental en un manglar semiárido del departamento de la Guajira. | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Ghosh A, Bhadury P. Insights into bacterioplankton community structure from Sundarbans mangrove ecoregion using Sanger and Illumina MiSeq sequencing approaches: A comparative analysis. Genomic Data [Internet]. 2017 [cited 26 enero 2022]; 11: 39-42. Available in: https://www.sciencedirect.com/science/article/pii/S2213596016301672 | spa |
dc.relation.references | Abarca, S. C., Serrano, M. C., Bolívar-Anillo, H. J., Daza, D. A. V., Moreno, H. S., & Anfuso, G. Bosques de manglar del Caribe Norte Colombiano: Análisis, evolución y herramientas de gestión. Revista Latinoamericana de Recursos Naturales.[Internet]. (2020) [cited 27 abr 2021] 16(1), 31-54 Available in: https://doi.org.1033154/rlrn.2020.01.04 | spa |
dc.relation.references | López J, Reyes V,Rodrigo L,Lara A. Distribución, estructura y perspectivas de conservación de los manglares. [Internet]. 2011 [cited 6 may 2021]. Available in: https://www.researchgate.net/publication/333039706_Distribucion_estructura_y_p erspectivas_de_conservacion_de_los_manglares | spa |
dc.relation.references | Uribe J, Urrego L. Gestión ambiental de los ecosistemas de manglar. [Internet]. 2009 [cited 6 may 2021]. Available in: https://revistas.unal.edu.co/index.php/gestion/article/view/14254 | spa |
dc.relation.references | Alongi, D.. Estado actual y futuro de los manglares del mundo. Conservación del medio ambiente, 29 (3), 331-349. [Internet]. 2002 [cited 2021 NOV 08]. Available in: doi 10.1017 / S037689290200023 | spa |
dc.relation.references | Cummings A.R,Shah M.Mangroves in the global climate and environmental mix.Wiley.[Internet].2017 [cited 8 oct 2021]. Available in: https://onlinelibrary.wiley.com/doi/epdf/10.1111/gec3.12353 | spa |
dc.relation.references | Barbier, E. B. . The protective service of mangrove ecosystems: A review of valuation methods. Marine pollution bulletin, 109(2), 676-681. 2016 [cited 27 March 2022]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0025326X16300224 | spa |
dc.relation.references | Krauss, K. W., Lovelock, C. E., McKee, K. L., López-Hoffman, L., Ewe, S. M., & Sousa, W. P. (2008). Environmental drivers in mangrove establishment and early development: a review. Aquatic botany, 89(2), 105-127. 2008 Available in: https://10.1016/j.aquabot.2007.12.014 | spa |
dc.relation.references | Ordoñez, O. G., & Martínez, M. L. C. Supervivencia de propágulos de Rhizophora mangle bajo tensores ambientales en el brazo Calancala del río Ranchería, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 45(2).(2016) [cited 27 March 2022]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-9761201600020 0345 | spa |
dc.relation.references | Lema Vélez, L. F.,y Polanía, J. . Estructura y dinámica del manglar del delta del río Ranchería, Caribe colombiano. Revista de biología tropical, 55(1), 11-21. [Internet]. 2007 [cited 20 enero 2022] 55(1), 11-21 Available in: https://www.scielo.sa.cr/pdf/rbt/v55n1/3602.pdf | spa |
dc.relation.references | Polanía J, Orozco-ToroCA, Ángel IF. Delta del Río Ranchería (La Guajira, Colombia): caudal, salida y transporte de sólidos y su posible influencia sobre composición y estructura de los manglares. Actual. Biol. [Internet]. 22 de noviembre de 2017 [citado 5 de mayo de 2021];28(84):27-. Available in: https://revistas.udea.edu.co/index.php/actbio/article/view/329400 | spa |
dc.relation.references | Mohapatra.M,Yadav.R, Rajp u.V,Dharne.M, Rastogi.G.Metagenomic analysis reveals genetic insights on biogeochemical cycling, xenobiotic degradation, and stress resistance in mudflat microbiome.Elsevier.[Internet].2021 [cited 08 oct 2021];volumen 292. Available in: https://doi.org/10.1016/j.jenvman.2021.112738 | spa |
dc.relation.references | Aparna B, Shrabana S, Sara C,Rajib B. Exopolysaccharides and Biofilms in Mitigating Salinity Stress: The Biotechnological Potential of Halophilic and Soil-Inhabiting PGPR Microorganisms. Springer link. [Internet]. 2019 [cited 5 may 2021]. Available in:https://link.springer.com/chapter/10.1007/978-3-030-18975-4_6 | spa |
dc.relation.references | Pedro H. Lebre, Pieter De Maayer, Don A. Cowan. Xerotolerant bacteria: surviving through a dry spell. Nat Rev Microbiol, [Internet]. 2017 15 (5): 285-296. [cited 2021 oct 26]. Available in: https://pubmed.ncbi.nlm.nih.gov/28316329/ | spa |
dc.relation.references | A, Robles K, Romero M, Urrego L. Diversidad e interacciones biológicas en el ecosistema manglar. Revciencias. [Internet]. 2018 [cited 6 may 2021]. Available in: https://doi.org/10.25100/rc.v22i2.7925. | spa |
dc.relation.references | Lamz Piedra, A., & González Cepero, M. C.. La salinidad como problema en la agricultura: la mejora vegetal una solución inmediata. Cultivos tropicales, [Internet]. 2013 [cited 10 dic 2021] 34(4), 31-42. Available in: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362013000400005 | spa |
dc.relation.references | Álvarez, A., Baños, R., & Otero, L. Salinidad y uso de aguas salinas para la irrigación de cultivos y forrajes en Cuba. Ciencia y tecnología ganadera, 2(1), 1-12. [Internet]. 2008 [cited 10 dic 2021] 34(4), 31-42. Available in: http://www.actaf.co.cu/revistas/Revista%20CIMAGT/Rev.Vol.2%20No.1,%202008/ Vol.2(1)08Aurelio.pdf | spa |
dc.relation.references | Nizam, A., Meera, S. P., & Kumar, A. . Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. Iscience, 25(1), 103547. [Internet].2022 [cited 30 marzo 2021]. Available in:https://www.sciencedirect.com/science/article/pii/S258900422101517 | spa |
dc.relation.references | Cavicchioli, R., Thomas, T., & Curmi, P. M. . Cold stress response in Archaea. Extremophiles, 4(6), 321-331. [Internet].2000 [cited 2021 NOV 08]. Available in: DOI: https://link.springer.com/article/10.1007%2Fs007920070001 | spa |
dc.relation.references | Coker, J. A., DasSarma, P., Kumar, J., Müller, J. A., & DasSarma, S.. Transcriptional profiling of the model Archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature. Saline systems, 3(1), 1-17.[Internet].2007 [cited 2021 NOV 08]. Available in: DOI: https://doi.org/10.1186/1746-1448-3-6 | spa |
dc.relation.references | Van Kessel,J.,Rutherford S, Cong JC,Quinodoz S, Healy J, and Bonnie L. Quorum Sensing Regulates the Osmotic Stress Response in Vibrio harveyi. [Internet]. 2014 [cited 2021 OCT 26 ]. Available in: DOI https://doi.org/10.1128/JB.02246-14 | spa |
dc.relation.references | Sanchez D, Bonilla R, Respuesta vegetal de Acacia decurrens a la inoculación con Rizobacterias promotoras de crecimiento vegetal bajo estrés salino. Rev.temas agrarios [Internet]. 2014 [cited 28 abr 2021];19(2), 159-172. Available in: https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/731/847 | spa |
dc.relation.references | Rubiano C, análisis comparativo de la expresión de proteínas de tistlia consotensis en respuesta a cambios en la salinidad externa. Universidad Pontificia Javeriana. [Internet]. 2014 [cited 28 abr 2021]. Available in: https://repository.javeriana.edu.co/bitstream/handle/10554/17003/RubianoLabrado rCarolina2015.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Ambily VI,Loka PA.Diversity in transcripts and translational pattern of stress proteins in marine extremophiles. Springerlink.[Internet]. 2014 [cited 1 may 2021]. Available in: https://link.springer.com/article/10.1007%2Fs00792-010-0348-x | spa |
dc.relation.references | Phuong Thi Le, Thulani P Makhalanyane, Leandro D Guerrero, Surendra Vikram, Yves Van de Peer, Don A Cowan. Comparative Metagenomic Analysis Reveals Mechanisms for Stress Response in Hypoliths from Extreme Hyperarid Deserts. Genome Biol Evol 2016 Sep 11;8(9):2737-47. [Internet]. 2016 [cited 2021 OCT 26]. Available in: DOI https://pubmed.ncbi.nlm.nih.gov/27503299/ | spa |
dc.relation.references | Alloing G., Travers I, Sagot B, Le Rudulier D, Dupont.,L.Proline Betaine Uptake in Sinorhizobium meliloti: Characterization of Prb, an Opp-Like ABC Transporter Regulated by both Proline Betaine and Salinity Stress [Internet]. 2020 [cited 2021 OCT 26 ]. Available in: DOI https://doi.org/10.1128/JB.00585-06 | spa |
dc.relation.references | Gregory, G. J., & Boyd, E. F.). Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae. Computational and structural biotechnology journal, 19, 1014. [Internet].2021 [cited 2021 NOV 08]. Available in: DOI: https://doi.org/10.1016/j.csbj.2021.01.030 | spa |
dc.relation.references | Llanes, A., Palchetti, M. V., Vilo, C., & Ibañez, C. . Molecular control to salt tolerance mechanisms of woody plants: recent achievements and perspectives. Annals of Forest Science, 78(4), 1-19. [Internet]. 2021 [cited 2021 abril 28 ]. Available in: DOI: https://link.springer.com/article/10.1007/s13595-021-01107-7 | spa |
dc.relation.references | Cintrón G, Bosques de manglar: ecología y respuesta a estresores naturales e inducidos por el hombre. [Internet] 2001 [cited 23 Sep 2021]. Available in:https://www.govinfo.gov/content/pkg/CZIC-sd397-m25-c56-1982/html/CZIC-sd 397-m25-c56-1982.htm | spa |
dc.relation.references | Paingankar, M. S., & Deobagkar, D. D. Pollution and environmental stressors modulate the microbiome in estuarine mangroves: a metagenome analysis. Current Science, 115(8), 1525-1535.[Internet].2018 [cited 08 oct 2021]. Available in: http://www.indiaenvironmentportal.org.in/files/file/estuarine_mangroves.pdf | spa |
dc.relation.references | Krwawicz, J., Arczewska, K. D., Speina, E., Maciejewska, A., & Grzesiuk, E. Bacterial DNA repair genes and their eukaryotic homologues: 1. Mutations in genes involved in base excision repair (BER) and DNA-end processors and their implication in mutagenesis and human disease. Acta Biochimica Polonica, 54(3), 413-434. [Internet].2007 [cited 08 oct 2021]. Available in: http://www.actabp.pl/pdf/3_2007/413.pdf | spa |
dc.relation.references | Dianov GL, O'Neill P, Goodhead DT. Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. Bioessays.23(8):745-9 [Internet] .2001 [cited 08 oct 2021]. Available in: DOI: 10.1002 / bies.1104 | spa |
dc.relation.references | Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res. 18(1):85-98 [Internet] .2008 [cited 08 oct 2021]. Available in: DOI: 10.1038 / cr.2007.115 | spa |
dc.relation.references | Maloisel.L, Fabre.F,Gangloff.S.,DNA Polymerase δ Is Preferentially Recruited during Homologous Recombination To Promote Heteroduplex DNA Extension.American Society for Microbiology. [Internet]. 2008. [cited 08 oct 2021]. Available in: https://doi.org/10.1128/MCB.01651-07 | spa |
dc.relation.references | Delepelaire, P. Type I secretion in gram-negative bacteria. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1694(1-3), 149-161. [Internet]. 2014. [cited 08 oct 2021]. Available in: https://doi.org/10.1016/j.bbamcr.2004.05.001 | spa |
dc.relation.references | . Catarina S. Pereira, Jessica A. Thompson, Karina B. Xavier, AI-2-mediated signaling in bacteria, FEMS Microbiology Reviews. 156–181 [Internet]. 2013 [cited 08 oct 2021]. Available in: https://doi.org/ 10.1111 / j.1574-6976.2012.00345.x | spa |
dc.relation.references | Scarascia, G., Lehmann, R., Machuca, L. L., Morris, C., Cheng, K. Y., Kaksonen, A., & Hong, P. Y. Effect of quorum sensing on the ability of Desulfovibrio vulgaris to form biofilms and to biocorrode carbon steel in saline conditions. Applied and environmental microbiology, 86(1), e01664-19. [Internet]. 2019 [cited 20 oct 2021]. Available in: https://journals.asm.org/doi/pdf/10.1128/AEM.01664-19 | spa |
dc.relation.references | Nichols, J.D., M.R. Johnson, C.J. Chou & R.M. Kelly. 2009. Temperature, not LuxS, mediates AI-2 formation in hydrothermal habitats. FEMS microbiology ecology, 68: 173-181 [Internet]. 2009 [cited 20 oct 2021]. Available in: https://doi.org/10.1111/j.1574-6941.2009.00662.x | spa |
dc.relation.references | Kostner, D., Luchterhand, B., Junker, A. et al. La consecuencia de un parálogo adicional de NADH deshidrogenasa en el crecimiento de Gluconobacter oxydans DSM3504. Appl Microbiol Biotechnol 99, 375–386 . [Internet] 2015 [cited 27 March 2022].Available in: https://doi.org/10.1007/s00253-014-6069-9 | spa |
dc.relation.references | Sepúlveda-Correa, A., Daza-Giraldo, L. V., Polanía, J., Arenas, N. E., Muñoz-García, A., Sandoval-Figueredo, A. V., & Vanegas, J.. Genes associated with antibiotic tolerance and synthesis of antimicrobial compounds in a mangrove with contrasting salinities. Marine Pollution Bulletin,. [Internet]. 2021 [cited 26 enero 2022] 55(1), 171, 112740 Available in: https://doi.org/10.1016/j.marpolbul.2021.112740 | spa |
dc.relation.references | Frase MW, Gleeson DB, Grierson PF, Laverock B, Kendrick GA. Metagenomic Evidence of Microbial Community Responsiveness to Phophorus and Salinity Gradients in Seagrass Sediments. FrontMicrobiol [Internet]. 2018 [cited 2018 Oct 31] 9:17:1703. Available in: https://www.ncbi.nlm.nih.gov/pubmed/30105009 | spa |
dc.relation.references | García Valero, R. M.. M ... Redes de señalización implicadas en la regulación del metabolismo de las ectoínas en la bacteria halófila Chromohalobacter salexigens y su potencial terapéutico como agente neuroprotector.2020 [cited 27 March. 2022] Available in: https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-12-S1-S8 | spa |
dc.relation.references | Ana Sofía Flores Castellanos1 Lucio Rodríguez Sifuentes1 * Yeni N. Pérez Gelvez2 Gerardo Gutiérrez Sánchez 2 2018 Influencia de fuentes de fosfato inorganico en la expresion de proteínas de una cepa bacteriana solubizadora de fosfato nativa de La comarca Lagunera Nova scientia vol.10 no.21 Available in: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-070520180002 00173 | spa |
dc.relation.references | Warner Urías, Norberto Alexsandro. Caracterización fisiológica de tres fenotipos de Mesembryanthemum crystallinum y análisis de la expresión de los genes antiporte Mcnhx1 y Mcnhx2 durante el estrés salino. [cited 21 April 2022]. Available in: http://dspace.cibnor.mx:8080/handle/123456789/509 | spa |
dc.relation.references | Stirling, D. A., Hulton, C. S. J., Waddell, L., Park, S. F., Stewart, G. S. A. B., Booth, I. R., & Higgins, C. F. (1989). Molecular characterization of the proU loci of Salmonella typhimurium and Escherichia coli encoding osmoregulated glycine betaine transport systems. Molecular microbiology, 3(8), 1025-1038. Available in: https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.1989.tb00253.x | spa |
dc.relation.references | Pereyra Cardozo m. & A. Quiriban. LAS PROTEÍNAS EN LA TOLERANCIA AL ESTRÉS HÍDRICO EN PLANTAS. SEMIÁRIDA Revista de la Facultad de Agronomía UNLPam Vol 24(1):55-67. (2014) [cited 19 April 2022]. Available in: https://cerac.unlpam.edu.ar/index.php/semiarida/article/view/3024/2935 | spa |
dc.relation.references | Bin Fan and Barry P. Rosen. Biochemical Characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase*. THE JOURNAL OF BIOLOGICAL CHEMISTRY. Published, JBC Papers in Press, September 25, 2002. [cited 27 March 2022]. Available in: https://www.jbc.org/action/showPdf?pii=S0021-9258%2819%2971419-7 | spa |
dc.relation.references | C Cervantes, AE Espino-Saldaña, F Acevedo-Aguilar, IL León-Rodríguez, ME RiveraCano, M Avila-Rodríguez, K Wróbel-Kaczmarczyk, K W. Interacciones microbianas con metales pesados. Revista Latinoamericana de MICROBIOLOGÍA. (2006). [cited 19 April 2022]. Available in: https://www.medigraphic.com/pdfs/lamicro/mi-2006/mi062v.pdf?q=metales | spa |
dc.relation.references | Rojas Badía, M. M. Quorum sensing en la asociación beneficiosa de las bacterias con las plantas. Revista colombiana de biotecnología, 13(2), 135-143 (2011).[cited 27 March 2022] Available in: .http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-347520110002 00012 | spa |
dc.relation.references | Melissa B. Miller y Bonnie L. Bassler. Quorum Sensing in Bacteria. Annual Review of Microbiology Volume 55, 2001 Vol. 55:165-199. (2001). [cited 21 April 2022]. Available in: https://www.annualreviews.org/doi/full/10.1146/annurev.micro.55.1.165#_i4 | spa |
dc.relation.references | López Pérez, S. S. Evaluación de los mecanismos de comunicación celular en bacterias de sedimentos marinos. Centro de Estudios de Ciencias del Mar.[Internet] 2019 [cited 27 March 2022] Available in: https://repositorio.unal.edu.co/handle/unal/77230 | spa |
dc.relation.references | Dang, H.,Li.,T.,Chen., y Huang, G. .Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters., Appl.Environ.Microbiol.74,52-60 (2008) [cited 27 March 2022] Available in: https://journals.asm.org/doi/10.1128/AEM.01400-07 | spa |
dc.relation.references | Del Val, C., & Bondar, A. N. (2020). Diversity and sequence motifs of the bacterial SecA protein motor. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862(10), 183319. [cited 27 March 2022] Available in: https://www.sciencedirect.com/science/article/pii/S0005273620301504 | spa |
dc.relation.references | Wang, S., Yan, Z., Wang, P., Zheng, X., & Fan, J. (2020). Comparative metagenomics reveals the microbial diversity and metabolic potentials in the sediments and surrounding seawaters of Qinhuangdao mariculture area. PloS one, 15(6), e0234128. [cited 27 March 2022] Available in: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234128 | spa |
dc.relation.references | Hosie, A. H., & Poole, P. S. (2001). Bacterial ABC transporters of amino acids. Research in microbiology, 152(3-4), 259-270. [cited 27 March 2022] Available in: https://www.sciencedirect.com/science/article/abs/pii/S0923250801011974?via%3 Dihub | spa |
dc.relation.references | Zhengming Zhu, Xiaomei Ji, Zhimeng Wu, Juan Zhang, Guocheng Du. Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT. Published: 01 December 2018 [cited 27 March 2022]. Available in: https://academic.oup.com/jimb/article/45/12/1091/6015536?login=false | spa |
dc.relation.references | Erin R. Green, Joan Mecsas. Bacterial Secretion Systems: An Overview. 26 February 2016 [cited 27 March 2022]. Available in: https://journals.asm.org/doi/abs/10.1128/microbiolspec.VMBF-0012-2015 | spa |
dc.relation.references | Fröderberg, L., Houben, E. N., Baars, L., Luirink, J., & De Gier, J. W. (2004). Targeting and translocation of two lipoproteins in Escherichia coli via the SRP/Sec/YidC pathway. Journal of Biological Chemistry, 279(30), 31026-31032. [cited 27 March 2022]. Available in: https://www.sciencedirect.com/science/article/pii/S0021925818361532 | spa |
dc.relation.references | Pablo Vladimir Cabañas, Romero Alejandro Huerta Saquero. Nanomáquinas biológicas: los sistemas de secreción bacterianos. Centro de Nanociencias y Nanotecnología. UNAM. Jun-2021. [cited 21 April 2022]. Available in: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-569120140002 00028#:~:text=Los%20sistemas%20de%20secreci%C3%B3n%20que,h%C3%A1 bitat%2C%20principalmente%20con%20aquellas%20bacterias | spa |
dc.relation.references | Lee MS, Kim GA, Seo MS, Lee JH, Kwon ST. Characterization of heat-labile uracil-DNA glycosylase from Psychrobacter sp. HJ147 and its application to the polymerase chain reaction. Biotechnol Appl Biochem. [Internet]. 2009 [cited 20 febrero 2022]; 11: 39-42. Available in: doi: 10.1042/BA20080028 | spa |
dc.relation.references | Kim, G. A., Sun, Y., Song, J. G., Bae, H., Kim, J. H., & Kwon, S. T.Properties of cold-active uracil-DNA glycosylase from Photobacterium aplysiae GMD509, and its PCR application for carryover contamination control. Enzyme and microbial technology, [Internet] 2009 Feb [cited 10 March 2022]. Available in :44(5), 263-268. https://www.sciencedirect.com/science/article/abs/pii/S0141022908003529 | spa |
dc.relation.references | Yamagata, Y., Kato, M., Odawara, K., Tokuno, Y., Nakashima, Y., Matsushima, N, & Fujii, S. (1996). Three-dimensional structure of a DNA repair enzyme, 3-methyladenine DNA glycosylase II, from Escherichia coli. Cell, 86(2), 311-319. Available in:https://www.sciencedirect.com/science/article/pii/S0092867400801026 | spa |
dc.relation.references | Guo-Min Li. Mechanisms and functions of DNA mismatch repair. nature cell research. Published: 24 December 2007. [cited 20 March 2022]. Available in: https://www.nature.com/articles/cr2007115 | spa |
dc.relation.references | Thomas M. Marti,Christophe Kunz,Oliver Fleck. DNA mismatch repair and mutation avoidance pathways. Journal of cellular physiology. First published: 19 February 2002. [cited 20 March 2022]. Available in: https://onlinelibrary.wiley.com/doi/10.1002/jcp.10077 | spa |
dc.relation.references | . Dieppedale, J., Sobral, D., Dupuis, M., Dubail, I., Klimentova, J., Stulik, J., .. & Charbit, A. (2011). Identification of a putative chaperone involved in stress resistance and virulence in Francisella tularensis. Infection and immunity, 79(4), 1428-1439. Available in: https://journals.asm.org/doi/full/10.1128/IAI.01012-10 | spa |
dc.relation.references | Keith S Wong 1, Walid A Houry Novel structural and functional insights into the MoxR family of AAA+ ATPases. J Struct Biol 2012 Aug. Epub 2012 Apr 3. [Internet]. Available in: https://pubmed.ncbi.nlm.nih.gov/22491058/ | spa |
dc.relation.references | Joyce T. Reardon, Aziz Sancar. Nucleotide Excision Repair. Progress in Nucleic Acid Research and Molecular Biology, Academic Press. Volume 79, First published: 2005 [cited 27 March 2022]. Available in: https://www.sciencedirect.com/science/article/abs/pii/S0079660304790042 | spa |
dc.relation.references | Crowley DJ, Boubriak I, Berquist BR, Clark M, Richard E, Sullivan L, DasSarma S, McCready S. The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. Saline Syst. 2006 Sep 13;2:11. [cited 27 March 2022]. Available in: https://pubmed.ncbi.nlm.nih.gov/16970815/ | spa |
dc.relation.references | Madang Chanok Imagen, Ranjith Kumavath, La metagenómica de escopeta revela una comunidad procariótica heterogénea y una amplia gama de genes de resistencia a antibióticos en sedimentos de manglares, FEMS Microbiology Ecology, volumen 96, número 10, octubre de 2020, [cited 27 March 2022]. Available in: https://doi.org/10.1093/ femsec/fiaa173 | spa |
dc.relation.references | Santillán, O., Ramírez-Romero, M. A., Lozano, L., Checa, A., Encarnación, S. M., & Dávila, G. (2016). Región 4 of Rhizobium etli primary sigma factor (SigA) confers transcriptional laxity in Escherichia coli. Frontiers in microbiology, 7, 1078. [cited 27 March 2022]. Available in: https://www.frontiersin.org/articles/10.3389/fmicb.2016.01078/full | spa |
dc.relation.references | Poole, K. (2012). Bacterial stress responses as determinants of antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 67(9), 2069-2089. [cited 27 March 2022]. Available in :https://link-springer-com.ezproxy.unal.edu.co/referenceworkentry/10.1007/978-3- 642-30141-4_79 | spa |
dc.relation.references | Gamer, J., Bujard, H., & Bukau, B. (1992). Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell, 69(5), 833-842.[cited 27 March 2022]. Available in: https://pubmed.ncbi.nlm.nih.gov/1534276/ | spa |
dc.relation.references | Moghaieb R, Saneoka H and Fujita K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda marítima [Internet]. CienceDirect 2004 [cited 27 March 2022]. Available in: https://www.sciencedirect.com/science/article/pii/S0168945204000445?fbclid=IwA R3sVNcFVZGCIpFFVcHEduyzIbLldPBDhZ7CV-U0fArtACSudQF-ZDqFWPM | spa |
dc.relation.references | Munns R. Genes and salt tolerance: bringing them together. [Internet]. NewPhytologist 2005 [cited 27 March 2022]. Available in: https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.14698137.2005.01487.x?fbclid =IwAR2wBmw-JcxIC1uiNSuyqU78mCrV99eDJBOGF8uVpQG82RWlhbIbKPF0Va | spa |
dc.relation.references | Nancy Paola Echeverri-Ruíz, Ismena Mockus-Sivickas. mecanismos celulares en respuesta al estrés: sirtuinas. Revista de la Facultad de Medicina Versión impresa ISSN 0120-0011 rev.fac.med. vol.58 no.3 Bogotá julio/septiembre. (2010). [cited 19 April 2022]. Available in: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-0011201000030 0007 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | Tensores | |
dc.subject.lemb | Ambientes salinos | |
dc.subject.proposal | Metagenoma | spa |
dc.subject.proposal | Salinidad | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |