Mostrar el registro sencillo del ítem
Estudio de los mecanismos de resistencia de los principales microorganismos Gram negativos no fermentadores asociados a infecciones nosocomiales
dc.contributor.advisor | Cubillos Abello, Karen Andrea | |
dc.contributor.author | Sánchez Porras, Miguel Ángel | |
dc.date.accessioned | 2022-10-03T20:26:25Z | |
dc.date.available | 2022-10-03T20:26:25Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/5676 | |
dc.description.abstract | Las infecciones nosocomiales son causadas por una gran variedad de microorganismos que se encuentran en los ambientes hospitalarios, estos pueden ocasionar diversas patologías qué ponen en riesgo la vida del paciente o alargar los periodos de hospitalización. Se ha reportado que para el año 2018 cerca del 14% de las infecciones nosocomiales en el mundo fueron asociadas a Pseudomonas aeruginosa (P. aeruginosa) un 11% y Acinetobacter baumannii (A. baumannii ) 3%, así mismo se ha encontrado que estos microorganismos tienen la capacidad de desarrollar mecanismos de resistencia con los cuales son capaces de resistir a variedad de los antibióticos creados para su tratamiento. La multirresistencia de estos microorganismos ha ocasionado que la Organización Mundial de la Salud (OMS) en el 2017 los declaró de prioridad crítica. En P. aeruginosa y A. baumannii se han encontrado como principales mecanismos de resistencia intrínsecos la pérdida de porinas, las bombas de eflujo y la producción de betalactamasas, siendo estas últimas, también el principal mecanismo de resistencia adquirida. Con este trabajo se pretende profundizar en los mecanismos de resistencia presentados en estos microorganismos y así mismo, dar a conocer las técnicas fenotípicas para su identificación, avaladas por el instituto de estándares clínicos y de laboratorio (CLSI por sus siglas en inglés). | spa |
dc.description.tableofcontents | Tabla de contenido Índice de figuras 1 Índice de Tablas 2 Índice de anexos 3 Resumen 4 Introducción 5 Objetivos 7 Objetivo general 7 Objetivos específicos 7 1. Antecedentes 8 2. Marco referencial 13 2.1 Infecciones nosocomiales 13 2.2 Pared celular de los bacilos gram negativos 14 2.3 Bacilos gram negativos no fermentadores 15 2.4 Complejo A. baumannii/calcoaceticus 16 2.4.1 Mecanismos de resistencia intrínsecos 17 2.4.1.1 Betalactamasas tipo ADC 17 2.4.1.2 Betalactamasas tipo OXA 18 2.4.1.3 Pérdida de porinas 18 2.4.1.4 Bombas de eflujo 19 2.4.2 Mecanismo de resistencia adquirido 19 2.4.2.1 Betalactamasas 20 2.4.2.2 Betalactamasas de espectro extendido (BLEE) 20 2.4.2.3 Serinocarbapenemasas clase A 21 2.4.2.4 Serinocarbapenemasas clase D 21 2.4.2.5 Metalocarbapenemasas clase B 21 2.4.2.6 Enzimas modificadoras de aminoglucósidos 22 2.5 P. aeruginosa 22 2.5.1 Mecanismos de resistencia natural 23 2.5.1.1 Betalactamasas cromosómicas tipo PDC 24 2.5.1.2 Bombas de eflujo 24 2.5.1.3 Pérdida de la porinas 25 2.5.2 Mecanismos de resistencia adquiridos 25 2.5.2.1 Serinocarbapenemasas tipo A 25 2.5.2.2 Serinocarbapenemasas tipo D 26 2.5.2.3 Metalobetalactamasas tipo B 26 2.5.2.4 Betalactamasa de espectro extendido BLEE 27 2.5.2.5 Enzimas modificadoras de aminoglucósidos (EMA) 27 2.5.2.6 Metilasas del ARNr16S 27 2.6 Métodos de identificación fenotípica de betalactamasas según el manual de la CLSI29 2.6.1 Método de difusión en disco o método de Kirby-Bauer 29 2.6.2 Test de sinergia de doble disco 30 2.6.3 Test modificado de inactivación de carbapenémicos 31 2.6.4 Carba NP 32 2.6.5 Microdilución en caldo 33 2.6.6 Técnica molecular GeneXpert Carba 34 2.6.7 Reacción en cadena dela polimerasa en tiempo real o qPCR 35 3. Diseño metodológico 36 3.1 Tipo de investigación 36 3.2 Nivel o alcance de la investigación 36 3.3 Población objeto de muestra 36 3.4 Muestra de análisis 36 4. Resultados 38 5. Discusión 45 6. Conclusiones 51 7. Referencias bibliográficas 52 | eng |
dc.format.extent | 70 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022 | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Estudio de los mecanismos de resistencia de los principales microorganismos Gram negativos no fermentadores asociados a infecciones nosocomiales | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogota | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Alejandro Alfonso C, María Blandón Rodríguez A, Lucía Ospina Martínez M, Edwin Prieto Alvarado F, Eduardo Pacheco García Ó, Quijada Bonilla H. Infecciones intrahospitalarias. | spa |
dc.relation.references | Kukso F. Para 2050 la resistencia a los antibióticos será la principal causa de muerte - Scientific American - Español. Sci Am [Internet]. 2016 [cited 2022 Mar 30];(26 de julio del 2016). Available from: https://www.scientificamerican.com/espanol/noticias/para-2050-la-resistencia-a-los-antibiot icos-sera-la-principal-causa-de-muerte/ | spa |
dc.relation.references | Garza-Ramos U, Barrios H, Reyna-Flores F, Tamayo-Legorreta E, Catalan-Najera JC, Morfin-Otero R, et al. Informe De Resultados De La Vigilancia Por Laboratorio De Resistencia Antimicrobiana En Infecciones Asociadas a La Atención En Salud (Iaas) 2018 Dirección. Epidemiol las Infecc Asoc a la atención en salud. 2019;81(2):1–28. | spa |
dc.relation.references | Miltgen G, Bour M, Allyn J, Allou N, Vedani T, Vuillemenot J-B, et al. Molecular and epidemiological investigation of a colistin-resistant OXA-23/NDM-1-producing Acinetobacter baumannii outbreak in Southwest Indian Ocean. Int J Antimicrob Agents [Internet]. 2021 Jul 19 [cited 2021 Jul 29];106402. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857921001679 | spa |
dc.relation.references | Yaumara Aguilera Calzadilla, Yayquier Díaz Morales, Leonardo Abilio Ortiz Díaz, Olga Linee Gonzalez Martínez, Orlando Adolfo Lovelle Enríquez, María de Lourdes Sánchez Álvarez. Infecciones bacterianas asociadas a la COVID-19 en pacientes de una unidad de cuidados intensivos | Aguilera Calzadilla | Revista Cubana de Medicina Militar. Rev Cuba Med Mil [Internet]. 2020 [cited 2022 Mar 7];49(3). Available from: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/793/539 | spa |
dc.relation.references | Barie PS. Multidrug-Resistant Organisms and Antibiotic Management. Vol. 92, Surgical Clinics of North America. Elsevier; 2012. p. 345–91. | spa |
dc.relation.references | Oliva Menacho JE. Genes que expresan resistencia a carbapenemasas presentes en Pseudomona aeruginosa. Rev Peru Ciencias la Salud [Internet]. 2021 Jan 1 [cited 2021 Sep 10];3(1):e244–e244. Available from: http://revistas.udh.edu.pe/index.php/RPCS/article/view/244e | spa |
dc.relation.references | Ávila-Torres YY, Cáceres-Rojas MF, Aguilera-Becerra AM. Infecciones asociadas a dispositivos, perfil microbiológico y resistencia bacteriana en unidades de cuidados intensivos de Casanare - Colombia. Rev Investig en Salud Univ Boyacá [Internet]. 2021 [cited 2022 Mar 15];8(2). Available from: https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/640/636 | spa |
dc.relation.references | Mamishi S, Mahmoudi S, Naserzadeh N, Sadeghi RH, Ashtiani MTH, Bahador A, et al. Antibiotic resistance and genotyping of gram-negative bacteria causing hospital-acquired infection in patients referred to children’s medical center. Infect Drug Resist [Internet]. 2019 [cited 2021 Aug 22];12:3377–84. Available from: /pmc/articles/PMC6825472/ | spa |
dc.relation.references | Hu HB, Huang HJ, Peng QY, Lu J, Lei XY. Prospective study of colonization and infection because of Pseudomonas aeruginosa in mechanically ventilated patients at a neonatal intensive care unit in China. Am J Infect Control. 2010 Nov 1;38(9):746–50 | spa |
dc.relation.references | Suárez C, Peña C, Gavaldà L, Tubau F, Manzur A, Dominguez MA, et al. Influence of carbapenem resistance on mortality and the dynamics of mortality in Pseudomonas aeruginosa bloodstream infection. Int J Infect Dis. 2010 Sep 1;14(SUPPL. 3):e73–8. | spa |
dc.relation.references | Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019 Jan 1;37(1):177–92. | spa |
dc.relation.references | Mercado-Tobio Luisa Fernanda, Martínez Orfa Contreras, Angulo-Ortiz Alberto. EVALUACIÓN DE LA ACTIVIDAD ANTIBIOPELÍCULA DE LOS EXTRACTOS DE Trichilia hirta L. FRENTE AISLADOS CLÍNICOS DE Pseudomona aeruginosa EN MONTERÍACÓRDOBA [Internet]. Universidad de Córdoba. Facultad de Ciencias Básicas. Laboratorio de Productos Naturales. [Cordoba]: Universidad de cordoba; 2020 [cited 2021 Sep 5]. Available from: https://repositorio.unicordoba.edu.co/bitstream/handle/ucordoba/3569/MercadoTobioLuisa Fernanda-ContrerasMartínezOrfaInés-ÁnguloOrtízAlbertoAntonio.pdf?sequence=1&isAllo wed=y | spa |
dc.relation.references | Gaete ME, Valenzuela MP, Bachero AW, Vega CC, Marín NV, Labarca JL, et al. Carbapenemasas en Pseudomonas aeruginosa con susceptibilidad disminuida a los carbapenémicos después de una década, desde VIM a KPC. Rev Chil infectología [Internet]. 2020 Aug 1 [cited 2021 Sep 12];37(4):389–94. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182020000400389&lng= es&nrm=iso&tlng=es | spa |
dc.relation.references | Asif M, Alvi IA, Ur Rehman S. Insight into acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities [Internet]. Vol. 11, Infection and Drug Resistance. Dove Press; 2018 [cited 2021 Aug 22]. p. 1249–60. Available from: /pmc/articles/PMC6110297/ | spa |
dc.relation.references | Ribeiro LF, Lopes EM, Kishi LT, Ribeiro LFC, Menegueti MG, Gaspar GG, et al. Microbial community profiling in intensive care units expose limitations in current sanitary standards. Front Public Heal. 2019;7(AUG):240 | spa |
dc.relation.references | Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence [Internet]. Vol. 16, Nature Reviews Microbiology. NIH Public Access; 2018 [cited 2021 Aug 22]. p. 91–102. Available from: /pmc/articles/PMC6571207/ | spa |
dc.relation.references | Cendra M del M, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv. 2021 Jul 1;49:107734. | spa |
dc.relation.references | Pujol M, Limón E. Epidemiología general de las infecciones nosocomiales. Sistemas y programas de vigilancia. Enferm Infecc Microbiol Clin [Internet]. 2013 Feb 1 [cited 2021 Aug 29];31(2):108–13. Available from: https://www.elsevier.es/es-revista-enfermedades-infecciosas-microbiologia-clinica-28-artic ulo-epidemiologia-general-infecciones-nosocomiales-sistemas-S0213005X13000025 | spa |
dc.relation.references | Angeletti S, Cella E, Prosperi M, Spoto S, Fogolari M, De Florio L, et al. Multi-drug resistant Pseudomonas aeruginosa nosocomial strains: Molecular epidemiology and evolution. Microb Pathog. 2018 Oct 1;123:233–41. | spa |
dc.relation.references | Llanos-Torres KH, Pérez-Orozco R, Málaga G. Infecciones nosocomiales en unidades de observación de emergencia y su asociación con el hacinamiento y la ventilación. Rev Peru Med Exp Salud Publica [Internet]. 2020 Oct 13 [cited 2021 Sep 13];37(4):721–5. Available from: https://rpmesp.ins.gob.pe/rpmesp/article/view/5192/4010 | spa |
dc.relation.references | Rosales C, Francesconi GV, Molina J, Listovsky G, Carvalho C, Kemper ES, et al. Sistema Integrado de Informações Mais Médicos: uma ferramenta de suporte à gestão baseada em evidências. Rev Panam Salud Pública. 2020;1–7. | spa |
dc.relation.references | da Costa JST, Lima CA, Vera-Leiva A, San Martin Magdalena I, Bello-Toledo H, Domínguez Yévenes M, et al. Carbapenemasas en aislamientos de Pseudomonas aeruginosa resistentes a carbapenémicos aisladas en hospitales de Chile. Rev Chil infectología [Internet]. 2021 [cited 2022 Feb 14];38(1):81–7. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182021000100081&lng= es&nrm=iso&tlng=es | spa |
dc.relation.references | Kostyanev T, Xavier BB, García-Castillo M, Lammens C, Bravo-Ferrer Acosta J, Rodríguez-Baño J, et al. Phenotypic and molecular characterizations of carbapenem-resistant Acinetobacter baumannii isolates collected within the EURECA study. Int J Antimicrob Agents. 2021 Jun 1;57(6):106345. | spa |
dc.relation.references | Nikibakhsh M, Firoozeh F, Badmasti F, Kabir K, Zibaei M. Molecular study of metallo-β-lactamases and integrons in Acinetobacter baumannii isolates from burn patients. BMC Infect Dis. 2021 Dec 1;21(1). | spa |
dc.relation.references | Guner Ozenen G, Sahbudak Bal Z, Umit Z, Avcu G, Tekin D, Kurugol Z, et al. Nosocomial Non-fermentative gram negative bacteria bloodstream infections in children; Risk factors and clinical outcomes of carbapenem resistance. J Infect Chemother. 2021 May 1;27(5):729–35 | spa |
dc.relation.references | Yamani L, Alamri A, Alsultan A, Alfifi S, Ansari MA, Alnimr A. Inverse correlation between biofilm production efficiency and antimicrobial resistance in clinical isolates of Pseudomonas aeruginosa. Microb Pathog. 2021 Aug 1;157:104989. | spa |
dc.relation.references | Ropponen HK, Richter R, Hirsch AKH, Lehr CM. Mastering the Gram-negative bacterial barrier – Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev. 2021 May 1;172:339–60. | spa |
dc.relation.references | Chen J, Zhou R, Li Z, Li Q, Long Y, Wang H, et al. Effect of nurse-led, goal-directed lung physiotherapy on prognosis of patients with sepsis caused by Acinetobacter baumannii pulmonary infection. Int J Infect Dis. 2021 Feb 1;103:167–72 | spa |
dc.relation.references | Yadav SK, Bhujel R, Hamal P, Mishra SK, Sharma S, Sherchand JB. Burden of multidrug-resistant acinetobacter baumannii infection in hospitalized patients in a tertiary care hospital of Nepal. Infect Drug Resist [Internet]. 2020 [cited 2021 Aug 22];13:725–32. Available from: /pmc/articles/PMC7061726/ | spa |
dc.relation.references | Kurihara MNL, Sales RO de, Silva KE da, Maciel WG, Simionatto S. Multidrug-resistant Acinetobacter baumanniioutbreaks: a global problem in healthcare settings. Rev Soc Bras Med Trop [Internet]. 2020 [cited 2021 Aug 22];53:e20200248. Available from: /pmc/articles/PMC7670754/ | spa |
dc.relation.references | Rosales C, Francesconi GV, Molina J, Listovsky G, Carvalho C, Kemper ES, et al. Sistema Integrado de Informações Mais Médicos: uma ferramenta de suporte à gestão baseada em evidências. Rev Panam Salud Pública. 2020;1–7. | spa |
dc.relation.references | da Costa JST, Lima CA, Vera-Leiva A, San Martin Magdalena I, Bello-Toledo H, Domínguez Yévenes M, et al. Carbapenemasas en aislamientos de Pseudomonas aeruginosa resistentes a carbapenémicos aisladas en hospitales de Chile. Rev Chil infectología [Internet]. 2021 [cited 2022 Feb 14];38(1):81–7. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182021000100081&lng= es&nrm=iso&tlng=es | spa |
dc.relation.references | Cipko K, Kizny Gordon A, Adhikari S, Konecny P. Cefiderocol treatment of Pseudomonas aeruginosa and extensively drug-resistant Acinetobacter baumannii retained spinal hardware infection causing reversible acute interstitial nephritis: Recto: Cefiderocol causing acute interstitial nephritis. Int J Infect Dis. 2021 Aug 1;109:108–11. | spa |
dc.relation.references | Subedi D, Vijay AK, Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. https://doi.org/101111/cxo12621 [Internet]. 2021 Mar 1 [cited 2021 Sep 20];101(2):162–71. Available from: https://www.tandfonline.com/doi/abs/10.1111/cxo.12621 | spa |
dc.relation.references | Asenjo A, Oteo-Iglesias J, Alós J-I. What’s new in mechanisms of antibiotic resistance in bacteria of clinical origin? Enfermedades Infecc y Microbiol Clin (English ed). 2021 Jun 1;39(6):291–9. | spa |
dc.relation.references | Rosales-Reyes R, Vargas-Roldán SY, Lezana-Fernández JL, Santos-Preciado JI. Pseudomonas Aeruginosa: Genetic Adaptation, A Strategy for its Persistence in Cystic Fibrosis. Arch Med Res. 2021 May 1;52(4):357–61 | spa |
dc.relation.references | Huang X, Li T, Zhang X, Deng J, Yin X. Bimetallic palladium@copper nanoparticles: Lethal effect on the gram-negative bacterium Pseudomonas aeruginosa. Mater Sci Eng C. 2021 Oct 1;129:112392. | spa |
dc.relation.references | Bashir A, Brown JS. Pseudomonas aeruginosa. Ref Modul Biomed Sci [Internet]. 2021 Jan 1 [cited 2021 Sep 10]; Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081027233002584 | spa |
dc.relation.references | Crémet L, Leroy AG, Muller D, Delanou S, Burghelea A, Broquet A, et al. Antibiotic resistance heterogeneity and LasR diversity within Pseudomonas aeruginosa populations from pneumonia in intensive care unit patients. Int J Antimicrob Agents. 2021 Jun 1;57(6):106341 | spa |
dc.relation.references | Li Y, Xia L, Chen J, Lian Y, Dandekar AA, Xu F, et al. Resistance elicited by sub-lethal concentrations of ampicillin is partially mediated by quorum sensing in Pseudomonas aeruginosa. Environ Int. 2021 Nov 1;156:106619. | spa |
dc.relation.references | Khademi F, Maarofi K, Arzanlou M, Peeri-Dogaheh H, Sahebkar A. Which missense mutations associated with DNA gyrase and topoisomerase IV are involved in Pseudomonas aeruginosa clinical isolates resistance to ciprofloxacin in Ardabil? Gene Reports. 2021 Sep 1;24:101211. | spa |
dc.relation.references | Abavisani M, Goudarzi M, Ghalavand Z, Hajikhani B, Rad ZR, Rad ZR, et al. Evaluation of efflux pumps overexpression and β-lactamase genes among colistin resistant Pseudomonas aeruginosa. Gene Reports. 2021 Sep 1;24:101301. | spa |
dc.relation.references | Zahedi bialvaei A, Rahbar M, Hamidi-Farahani R, Asgari A, Esmailkhani A, Mardani dashti Y, et al. Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb Pathog. 2021 Apr 1;153:104789. | spa |
dc.relation.references | Tang B, Yang H, Jia X, Feng Y. Coexistence and characterization of Tet(X5) and NDM-3 in the MDR-Acinetobacter indicus of duck origin. Microb Pathog. 2021 Jan 1;150:104697. | spa |
dc.relation.references | Snyman Y, Reuter S, Whitelaw AC, Stein L, Maloba MRB, Newton-Foot M. Characterisation of mcr-4.3 in a colistin-resistant Acinetobacter nosocomialis clinical isolate from Cape Town, South Africa. J Glob Antimicrob Resist. 2021 Jun 1;25:102–6 | spa |
dc.relation.references | Chen J, Zhou R, Li Z, Li Q, Long Y, Wang H, et al. Effect of nurse-led, goal-directed lung physiotherapy on prognosis of patients with sepsis caused by Acinetobacter baumannii pulmonary infection. Int J Infect Dis. 2021 Feb 1;103:167–72 | spa |
dc.relation.references | König P, Averhoff B, Müller V. K+ and its role in virulence of Acinetobacter baumannii. Int J Med Microbiol. 2021 Jul 1;311(5):151516. | spa |
dc.relation.references | Li Y, Peng C, Zhao D, Liu L, Guo B, Shi M, et al. Outer membrane protein A inhibits the degradation of caspase-1 to regulate NLRP3 inflammasome activation and exacerbate the Acinetobacter baumannii pulmonary inflammation. Microb Pathog. 2021 Apr 1;153:104788. | spa |
dc.relation.references | Hao M, Ma W, Dong X, Li X, Cheng F, Wang Y. Comparative genome analysis of multidrug-resistant Pseudomonas aeruginosa JNQH-PA57, a clinically isolated mucoid strain with comprehensive carbapenem resistance mechanisms. BMC Microbiol. 2021 Dec 1;21(1):1–16 | spa |
dc.relation.references | Mea HJ, Yong PVC, Wong EH. An overview of Acinetobacter baumannii pathogenesis: Motility, adherence and biofilm formation. Microbiol Res. 2021 Jun 1;247:126722. | spa |
dc.relation.references | Kostyanev T, Xavier BB, García-Castillo M, Lammens C, Bravo-Ferrer Acosta J, Rodríguez-Baño J, et al. Phenotypic and molecular characterizations of carbapenem-resistant Acinetobacter baumannii isolates collected within the EURECA study. Int J Antimicrob Agents. 2021 Jun 1;57(6):106345. | spa |
dc.relation.references | Elbehiry A, Marzouk E, Moussa IM, Dawoud TM, Mubarak AS, Al-Sarar D, et al. Acinetobacter baumannii as a community foodborne pathogen: Peptide mass fingerprinting analysis, genotypic of biofilm formation and phenotypic pattern of antimicrobial resistance. Saudi J Biol Sci. 2021 Jan 1;28(1):1158–66. | spa |
dc.relation.references | Yamani L, Alamri A, Alsultan A, Alfifi S, Ansari MA, Alnimr A. Inverse correlation between biofilm production efficiency and antimicrobial resistance in clinical isolates of Pseudomonas aeruginosa. Microb Pathog. 2021 Aug 1;157:104989. | spa |
dc.relation.references | Shan W, Zhang H, Kan J, Yin M, Zhang J, Wan L, et al. Acquired mucoid phenotype of Acinetobacter baumannii: Impact for the molecular characteristics and virulence. Microbiol Res. 2021 May 1;246:126702 | spa |
dc.relation.references | Bedenić B, Meštrović T. Mechanisms of resistance in gram-negative urinary pathogens: From country-specific molecular insights to global clinical relevance. Diagnostics. 2021;11(5). | spa |
dc.relation.references | Nikibakhsh M, Firoozeh F, Badmasti F, Kabir K, Zibaei M. Molecular study of metallo-β-lactamases and integrons in Acinetobacter baumannii isolates from burn patients. BMC Infect Dis. 2021 Dec 1;21(1). | spa |
dc.relation.references | Oliva Menacho JE. Genes que expresan resistencia a carbapenemasas presentes en Pseudomona aeruginosa. Rev Peru Ciencias la Salud [Internet]. 2021 Jan 1 [cited 2021 Sep 10];3(1):e244–e244. Available from: http://revistas.udh.edu.pe/index.php/RPCS/article/view/244e | spa |
dc.relation.references | Oliva Menacho JE. Genes que expresan resistencia a carbapenemasas presentes en Pseudomona aeruginosa. Rev Peru Ciencias la Salud [Internet]. 2021 Jan 1 [cited 2021 Sep 10];3(1):e244–e244. Available from: http://revistas.udh.edu.pe/index.php/RPCS/article/view/244e | spa |
dc.relation.references | Edwards F, MacGowan A, Macnaughton E. Antibiotic resistance [Internet]. Vol. 49, Medicine (United Kingdom). Elsevier; 2021 [cited 2021 Sep 5]. p. 1–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1357303921001985 | spa |
dc.relation.references | Henderson A, Bursle E, Stewart A, Harris PNA, Paterson D, Chatfield MD, et al. A systematic review of antimicrobial susceptibility testing as a tool in clinical trials assessing antimicrobials against infections due to gram-negative pathogens. Clinical Microbiology and Infection. Elsevier; 2021 | spa |
dc.relation.references | Guner Ozenen G, Sahbudak Bal Z, Umit Z, Avcu G, Tekin D, Kurugol Z, et al. Nosocomial Non-fermentative gram negative bacteria bloodstream infections in children; Risk factors and clinical outcomes of carbapenem resistance. J Infect Chemother. 2021 May 1;27(5):729–35 | spa |
dc.relation.references | Freire MP, Song ATW, Oshiro ICV, Andraus W, D’Albuquerque LAC, Abdala E. Surgical site infection after liver transplantation in the era of multidrug-resistant bacteria: what new risks should be considered? Diagn Microbiol Infect Dis. 2021 Jan 1;99(1):115220. | spa |
dc.relation.references | Bayraktar M, Kaya E, Ozturk A, İbahim BMS. Antimicrobial susceptibility of bacterial pathogens isolated from healthcare workers’ cellphones. Infect Dis Now. 2021 Jun 4 | spa |
dc.relation.references | Ropponen HK, Richter R, Hirsch AKH, Lehr CM. Mastering the Gram-negative bacterial barrier – Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev. 2021 May 1;172:339–60 | spa |
dc.relation.references | Pandit P, Sahni AK, Grover N, Dudhat V, Das NK, Biswas AK. Catheter-related blood stream infections: prevalence, risk factors and antimicrobial resistance pattern. Med J Armed Forces India. 2021 Jan 1;77(1):38–45. | spa |
dc.relation.references | Alharbi NM, Ziadi MM. Wastewater as a fertility source for novel bacteriophages against multi-drug resistant bacteria. Vol. 28, Saudi Journal of Biological Sciences. Elsevier; 2021. p. 4358–64. | spa |
dc.relation.references | Herbert R, Curtis C. Commonly encountered central nervous system infections in the neurointensive care unit. Anaesth Intensive Care Med. 2021 Feb 1;22(2):89–94. | spa |
dc.relation.references | Saidin S, Jumat MA, Mohd Amin NAA, Saleh Al-Hammadi AS. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. Mater Sci Eng C. 2021 Jan 1;118:111382. | spa |
dc.relation.references | Sambrano H, Castillo JC, Ramos CW, de Mayorga B, Chen O, Durán O, et al. Prevalence of antibiotic resistance and virulent factors in nosocomial clinical isolates of Pseudomonas aeruginosa from Panamá. Brazilian J Infect Dis. 2021 Jan 1;25(1):101038. | spa |
dc.relation.references | Gouveia e Melo R, Martins B, Pedro DM, Santos CM, Duarte A, Fernandes e Fernandes R, et al. Microbial evolution of vascular graft infections in a tertiary hospital based on positive graft cultures. J Vasc Surg. 2021 Jul 1;74(1):276-284.e4. | spa |
dc.relation.references | Aboelenin AM, Hassan R, Abdelmegeed ES. The effect of EDTA in combination with some antibiotics against clinical isolates of gram negative bacteria in Mansoura, Egypt. Microb Pathog. 2021 May 1;154:104840. | spa |
dc.relation.references | Saharman YR, Karuniawati A, Sedono R, Aditianingsih D, Qi H, Verbrugh HA, et al. Multimodal intervention to reduce acquisition of carbapenem-non-susceptible Gram-negative bacteria in intensive care units in the National Referral Hospital of Indonesia: An interrupted time series study. J Crit Care. 2021 Aug 1;64:237–44 | spa |
dc.relation.references | Cantón R, Huarte R, Morata L, Trillo-Mata JL, Muñoz R, González J, et al. Determining the burden of infectious diseases caused by carbapenem-resistant gram-negative bacteria in Spain. Enfermedades Infecc y Microbiol Clin (English ed). 2021 Apr 1;39(4):179–83. | spa |
dc.relation.references | Almangour TA, Alruwaili A, Almutairi R, Alrasheed A, Alhifany AA, Eljaaly K, et al. Aerosolized plus intravenous colistin vs intravenous colistin alone for the treatment of nosocomial pneumonia due to multidrug-resistant Gram-negative bacteria: A retrospective cohort study. Int J Infect Dis. 2021 Jul 1;108:406–12 | spa |
dc.relation.references | Miltgen G, Bour M, Allyn J, Allou N, Vedani T, Vuillemenot J-B, et al. Molecular and epidemiological investigation of a colistin-resistant OXA-23/NDM-1-producing Acinetobacter baumannii outbreak in Southwest Indian Ocean. Int J Antimicrob Agents [Internet]. 2021 Jul 19 [cited 2021 Jul 29];106402. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857921001679 | spa |
dc.relation.references | Cendra M del M, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv. 2021 Jul 1;49:107734 | spa |
dc.relation.references | Jackson L, Waters V. Factors influencing the acquisition and eradication of early Pseudomonas aeruginosa infection in cystic fibrosis. J Cyst Fibros. 2021 Jan 1;20(1):8–16. | spa |
dc.relation.references | Santos Rosado Castro M, da Silva Fernandes M, Kabuki DY, Kuaye AY. Modelling Pseudomonas fluorescens and Pseudomonas aeruginosa biofilm formation on stainless steel surfaces and controlling through sanitisers. Int Dairy J. 2021 Mar 1;114:104945. | spa |
dc.relation.references | Santos Rosado Castro M, da Silva Fernandes M, Kabuki DY, Kuaye AY. Modelling Pseudomonas fluorescens and Pseudomonas aeruginosa biofilm formation on stainless steel surfaces and controlling through sanitisers. Int Dairy J. 2021 Mar 1;114:104945. | spa |
dc.relation.references | Hosseinkhan N, Allahverdi A, Abdolmaleki F. The novel potential multidrug-resistance biomarkers for Pseudomonas aeruginosa lung infections using transcriptomics data analysis. Informatics Med Unlocked. 2021 Jan 1;22:100509. | spa |
dc.relation.references | McAulay K, Schuetz AN, Fauntleroy K, Shen L, Merveille YM, Deroncelay A, et al. Multidrug-resistant Pseudomonas aeruginosa in healthcare facilities in Port-au-Prince, Haiti. J Glob Antimicrob Resist. 2021 Jun 1;25:60–5 | spa |
dc.relation.references | Abozahra R, El-Kholy MA, Baraka K. Virulence genotyping of drug resistant Pseudomonas aeruginosa clinical isolates in Egypt using multiplex PCR. Gene Reports. 2021 Mar 1;22:101000 | spa |
dc.relation.references | Rad ZR, Rad ZR, Goudarzi H, Goudarzi M, Alizade H, Hematian A, et al. Detection of New Delhi Metallo-β-lactamase-1 among Pseudomonas aeruginosa isolated from adult and Pediatric patients in Iranian hospitals. Gene Reports. 2021 Jun 1;23:101152. | spa |
dc.relation.references | Tchakal-Mesbahi A, Metref M, Singh VK, Almpani M, Rahme LG. Characterization of antibiotic resistance profiles in Pseudomonas aeruginosa isolates from burn patients. Burns [Internet]. 2021 Mar 17 [cited 2021 Jul 29];12(1):15–22. Available from: https://www.mendeley.com/catalogue/563c3a31-1ae2-3f1c-b5b6-0be19bbc70a6/?utm_sour ce=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocumentId=%7Bc a78cba7-035a-3cca-86db-be52f38cd985%7D | spa |
dc.relation.references | Mkwata HM, Omoregie AI, Nissom PM. Lytic bacteriophages isolated from limestone caves for biocontrol of Pseudomonas aeruginosa. Biocatal Agric Biotechnol. 2021 Jul 1;34:102011. | spa |
dc.relation.references | Ali KM, Al-Jaff BMA. Source and antibiotic susceptibility of gram-negative bacteria causing superficial incisional surgical site infections. Int J Surg Open. 2021 Mar 1;30:100318. | spa |
dc.relation.references | Lim WY, Tan GSE, Htun HL, Phua HP, Kyaw WM, Guo H, et al. First nosocomial cluster of COVID-19 due to the Delta variant in a major acute care hospital in Singapore: investigations and outbreak response. J Hosp Infect. 2022 Apr 1;122:27–34 | spa |
dc.relation.references | Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context [Internet]. 2018 [cited 2022 Mar 31];7:212527. Available from: /pmc/articles/PMC5978525/ | spa |
dc.relation.references | Almangour TA, Alruwaili A, Almutairi R, Alrasheed A, Alhifany AA, Eljaaly K, et al. Aerosolized plus intravenous colistin vs intravenous colistin alone for the treatment of nosocomial pneumonia due to multidrug-resistant Gram-negative bacteria: A retrospective cohort study. Int J Infect Dis. 2021 Jul 1;108:406–12. | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | CLSI | |
dc.subject.lemb | Infecciones nosocomiales | |
dc.subject.lemb | Multirresistencia | |
dc.subject.proposal | Pseudomonas aeruginosa | spa |
dc.subject.proposal | Acinetobacter baumannii | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |