Mostrar el registro sencillo del ítem
Determinación de mecanismos de acción de péptidos frente a bacterias: revisión del estado del arte de las metodologías empleadas
dc.contributor.advisor | Estupiñán Torres, Sandra Mónica | |
dc.contributor.advisor | Rivera Monroy, Zuly Jenny | |
dc.contributor.advisor | Pineda Castañeda, Héctor Manuel | |
dc.contributor.author | Díaz Rodríguez, Karen Tatiana | |
dc.date.accessioned | 2022-09-19T14:04:40Z | |
dc.date.available | 2022-09-19T14:04:40Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/5671 | |
dc.description.abstract | En la última década, se ha trabajado en el hallazgo de nuevas moléculas peptídicas con actividad antibacteriana frente a microorganismos de importancia clínica actual, como lo son aquellos del grupo ESKAPE (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa y Enterococcus spp.), causantes de enfermedades como la gastroenteritis, neumonía, endocarditis, infecciones intrahospitalarias e infecciones cutáneas. En esta revisión, se discute sobre los antecedentes, características y mecanismos de acción propuestos para los PAMs, por medio de una recopilación de diferentes artículos experimentales enfocados principalmente a las técnicas que han permitido la elucidación del mecanismo de acción, entre ellas se encuentran técnicas y ensayos como la microscopía de fluorescencia, microscopía electrónica, microscopía de fuerza atómica, ensayos moleculares e inmunoenzimáticos, entre otros. Estos ensayos han permitido avanzar en la comprensión e interpretación de la interacción de PAMs con los microorganismos lo que ayuda a diseñar mejoras en la estructura de los PAMs que puedan potenciar su actividad antibacteriana. | spa |
dc.description.tableofcontents | TABLA DE CONTENIDO Introducción 12 1. Antecedentes 15 2. Marco teórico 18 2.1 Diversidad de los PAMs 18 2.2 Características fisicoquímicas de los PAMs 19 2.2.1 Estructura 19 2.2.2 Relación estructura-actividad 21 2.3 PAMs en la clínica 23 2.4 Mecanismo de acción de los PAMs 28 2.4.1 Mecanismo membranolítico de los PAMs 29 2.4.2 Mecanismo no membranolítico de los PAMs 31 3. Diseño metodológico 32 3.1 Tipo de investigación 33 3.2 Universo, población y muestra 34 3.2.1 Universo 34 3.2.2 Población 34 3.2.3 Muestra 34 3.3 Criterios de inclusión 34 3.4 Criterios de exclusión 34 3.5 Pregunta de investigación 35 4. Metodología 35 4.1 Revisión bibliográfica 35 5. Resultados y discusión 35 5.1 Revisión bibliográfica 35 5.2 Metodologías usadas en la determinación de mecanismos de acción 37 5.2.1 Metodologías asociadas a membrana 37 5.2.1.1 Dinámica molecular (DM) 38 5.2.1.2 Espectroscopía de resonancia magnética nuclear (RMN) 39 5.2.1.3 Microscopía de fuerza atómica (AFM) 41 7 5.2.1.4 Microscopía confocal láser de barrido (CLSM) 43 5.2.1.5 Microscopía electrónica de transmisión (MET) 45 5.2.1.6 Microscopía electrónica de barrido (MEB) 47 5.2.1.7 Microscopía de fluorescencia 49 5.2.1.8 Citometría de flujo 51 5.2.1.9 Tinción y liberación de colorantes 54 5.2.2 Metodologías asociadas a pared celular 56 5.2.3 Metodologías asociadas a blancos intracelulares 59 5.2.3.1 Inhibición de la replicación 60 5.2.3.1.1 Ensayo de desoxinucleotidil transferasa terminal (TUNEL) 60 5.2.3.1.2 Ensayo de retardo en gel 61 5.2.3.2 Inhibición de síntesis de proteínas 63 6. Conclusiones 65 7. Referencias 67 ANEXOS 75 Anexo 1. Diagrama de flujo de las metodologías a utilizar en la identificación del mecanismo de acción de péptidos con actividad antibacteriana. 75 Anexo 1.1. Metodologías utilizadas en la identificación de mecanismos de acción membranolíticos. 76 Anexo 1.2. Metodologías utilizadas en la identificación de mecanismos de acción sobre la pared bacteriana. 77 Anexo 1.3. Metodologías utilizadas en la identificación de mecanismos de acción intracelulares. 78 Anexo 2. Esquema de las metodologías utilizadas para la evaluación del mecanismo de acción en cada uno de los blancos bacterianos. 79 | eng |
dc.format.extent | 79p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Determinación de mecanismos de acción de péptidos frente a bacterias: revisión del estado del arte de las metodologías empleadas | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Park CB, Kim MS, Kim SC. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res Commun. 1996;218(1):408–13. | spa |
dc.relation.references | J.Dubos I. Studies on a bactericidal agent extracted from a soil bacillus isolation of a sporulating bacillus capable of lyzing the living cells of gram-positive microorganisms. --the method employed for the discovery. J Exp Med. 1939;70(1):1–10. | spa |
dc.relation.references | Mice IIN. STUDIES ON A BACTERICIDAL A G E N T E X T R A C T E D FROM A SOIL BACILLUS EXPERIMENTAL PI ~ EU ~ OCOCCUS INFECTIONS IN MICE Downloaded from jem . rupress . org on March 18 , 2015 In the preceding paper a description was given of the preparation and prope. 1939;(Table I):11– 7. | spa |
dc.relation.references | Topps J., Elliott RC. © 1965 Nature Publishing Group. Nat Publ Gr. 1965;205(5007):498–9. | spa |
dc.relation.references | Selsted ME, Brown DM, DeLange RJ, Harwig SS, Lehrer RI. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem. 1985;260(8):4579–84. | spa |
dc.relation.references | Selsted ME, Brown DM, DeLange RJ, Lehrer RI. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem. 1983;258(23):14485–9. | spa |
dc.relation.references | Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985;76(4):1427–35. | spa |
dc.relation.references | Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun. 1998;244(1):253–7. | spa |
dc.relation.references | Liu Y, Han F, Xie Y, Wang Y. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. 2011;1069–78 | spa |
dc.relation.references | Torcato IM, Huang YH, Franquelim HG, Gaspar D, Craik DJ, Castanho MARB, et al. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochim Biophys Acta - Biomembr. 2013;1828(3):944–55. | spa |
dc.relation.references | Schneider VAF, Coorens M, Bokhoven JLMT, Posthuma G, Dijk A van, Veldhuizen EJA, et al. Imaging the Antistaphylococcal Activity of CATH-2: Mechanism of Attack and Regulation of Inflammatory Response. mSphere. 2017 Dec;2(6). | spa |
dc.relation.references | Yan J, Wang K, Dang W, Chen R, Xie J, Zhang B, et al. Two Hits Are Better than One: Membrane-Active and DNA Binding-Related Double-Action Mechanism of NK-18, a Novel Antimicrobial Peptide Derived from Mammalian NK-Lysin. Antimicrob Agents Chemother. 2013 Jan;57(1):220. | spa |
dc.relation.references | Fleming A, B PRSL. On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc London Ser B, Contain Pap a Biol Character. 1922;93(653):306–17. | spa |
dc.relation.references | Gause GF, Brazhnikova MG. Gramicidin S and its use in the treatment of infected wounds [3]. Vol. 154, Nature. 1944. p. 703. | spa |
dc.relation.references | Van Epps HL. René Dubos: unearthing antibiotics. J Exp Med. 2006 Feb;203(2):259. | spa |
dc.relation.references | HIRSCH JG. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 1956;103(5):589–611. | spa |
dc.relation.references | Zeya HI, Spitznagel JK. Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J Bacteriol. 1966;91(2):755–62. | spa |
dc.relation.references | Hultmark D, Steiner H, Rasmuson T, Boman HG. from Hemolymph of Immunized Pupae of Hyalophora cecropia. Eur J Biochem. 1980;16:7–16. | spa |
dc.relation.references | Maloy WL, Kari UP. Structure–activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105–22. | spa |
dc.relation.references | Hancock REW, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A. 2000;97(16):8856–61. | spa |
dc.relation.references | Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: What do they tell us? Biopolymers. 1998;47(6):435–50 | spa |
dc.relation.references | Phoenix DA, Dennison SR, Harris F. Antimicrobial Peptides: Their History, Evolution, and Functional Promiscuity. Antimicrob Pept. 2013;1–37. | spa |
dc.relation.references | H. Steiner, D. Hultmark, A. Engstom, H. Bennich HGB. Cecropin.pdf. 1981. p. 5820. | spa |
dc.relation.references | Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987;84(15):5449–53. | spa |
dc.relation.references | Brogden KA, Ackermann M, Huttner KM. Small, anionic, and chargeneutralizing propeptide fragments of zymogens are antimicrobial. Antimicrob Agents Chemother. 1997;41(7):1615–7. | spa |
dc.relation.references | Smeaton JR, Elliott WH. Isolation and properties of a specific bacterial ribonuclease inhibitor. BBA Sect Nucleic Acids Protein Synth. 1967;145(3):547– 60. | spa |
dc.relation.references | Smeaton JR, Elliott WH. Isolation and properties of a specific bacterial ribonuclease inhibitor. BBA Sect Nucleic Acids Protein Synth. 1967;145(3):547– 60. | spa |
dc.relation.references | Smeaton JR, Elliott WH. Isolation and properties of a specific bacterial ribonuclease inhibitor. BBA Sect Nucleic Acids Protein Synth. 1967;145(3):547– 60. | spa |
dc.relation.references | Tytler EM, Anantharamaiah GM, Walker DE, Mishra VK, Palgunachari MN, Segrest JP. Molecular Basis for Prokaryotic Specificity of Magainin-Induced Lysis. Biochemistry. 1995;34(13):4393–401 | spa |
dc.relation.references | Steiner H, Andreu D, Merrifield RB. Binding and action of cecropin and cecropin analogues: Antibacterial peptides from insects. BBA - Biomembr. 1988;939(2):260–6. | spa |
dc.relation.references | Matsuzaki K, Sugishita KI, Harada M, Fujii N, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gramnegative bacteria. Biochim Biophys Acta - Biomembr. 1997 Jul;1327(1):119–30. | spa |
dc.relation.references | Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, et al. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science (80- ). 2006;313(5793):1636–7. | spa |
dc.relation.references | Li A, Lee PY, Ho B, Ding JL, Lim CT. Atomic force microscopy study of the antimicrobial action of Sushi peptides on Gram negative bacteria. Biochim Biophys Acta - Biomembr. 2007;1768(3):411–8 | spa |
dc.relation.references | Abee T. Pore-Forming Bacteriocins of Gam+ and Self Protection.Pdf. 1995;129:1– 9. | spa |
dc.relation.references | Mitchell W, Ng EA, Tamucci JD, Boyd KJ, Sathappa M, Coscia A, et al. The mitochondria-targeted peptide SS-31 binds lipid bilayers and modulates surface electrostatics as a key component of its mechanism of action. J Biol Chem. 2020 May;295(21):7452. | spa |
dc.relation.references | Stepek IA, Cao T, Koetemann A, Shimura S, Wollscheid B, Bode JW. Antibiotic Discovery with Synthetic Fermentation: Library Assembly, Phenotypic Screening, and Mechanism of Action of β-Peptides Targeting Penicillin-Binding Proteins. ACS Chem Biol. 2019;14(5):1030–40 | spa |
dc.relation.references | Schneider VAF, Coorens M, Ordonez SR, Tjeerdsma-Van Bokhoven JLM, Posthuma G, Van Dijk A, et al. Imaging the antimicrobial mechanism(s) of cathelicidin-2. Sci Rep. 2016 Sep;6. | spa |
dc.relation.references | Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018;8(1). | spa |
dc.relation.references | Browne K, Chakraborty S, Chen R, Willcox MDP, Black DS, Walsh WR, et al. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides. Int J Mol Sci. 2020 Oct;21(19):1–23. | spa |
dc.relation.references | Ahmed TAE, Hammami R. Recent insights into structure–function relationships of antimicrobial peptides. J Food Biochem. 2019;43(1):1–8. | spa |
dc.relation.references | Lee T-H, N. Hall K, Aguilar M-I. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure. Curr Top Med Chem. 2015;16(1):25–39. | spa |
dc.relation.references | Tuerkova A, Kabelka I, Králová T, Sukeník L, Pokorná Š, Hof M, et al. Effect of helical kink in antimicrobial peptides on membrane pore formation. Elife. 2020 Mar;9 | spa |
dc.relation.references | Vega Chaparro SC, Valencia Salguero JT, Martínez Baquero DA, Rosas Pérez JE. Effect of Polyvalence on the Antibacterial Activity of a Synthetic Peptide Derived from Bovine Lactoferricin against Healthcare-Associated Infectious Pathogens. Biomed Res Int. 2018;2018 | spa |
dc.relation.references | Lipkin R, Pino-Angeles A, Lazaridis T. Transmembrane Pore Structures of β-hairpin Antimicrobial Peptides by All-Atom Simulations. J Phys Chem B. 2017 Oct;121(39):9126 | spa |
dc.relation.references | Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016;6:1– 12. | spa |
dc.relation.references | Cárdenas-Martínez KJ, Grueso-Mariaca D, Vargas-Casanova Y, BonillaVelásquez L, Estupiñán SM, Parra-Giraldo CM, et al. Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides: Pursuing Production Lower Costs, Lower Hemolysis, and Sustained Antimicrobial Activity. Int J Pept Res Ther [Internet]. 2021;27(3):1751–62. Available from: https://doi.org/10.1007/s10989-021-10207-x | spa |
dc.relation.references | Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett. 2001 Jul;501(2–3):146–50 | spa |
dc.relation.references | Hall K, Lee TH, Aguilar MI. The role of electrostatic interactions in the membrane binding of melittin. J Mol Recognit. 2011;24(1):108–18. | spa |
dc.relation.references | Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS. Role of Peptide Hydrophobicity in the Mechanism of Action of α-Helical Antimicrobial Peptides. Antimicrob Agents Chemother. 2007 Apr;51(4):1398. | spa |
dc.relation.references | Brogden KA, De Lucca AJ, Bland J, Elliott S. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc Natl Acad Sci U S A. 1996;93(1):412–6. | spa |
dc.relation.references | Brogden KA, Ackermann M, Huttner KM. Detection of Anionic Antimicrobial Peptides in Ovine Bronchoalveolar Lavage Fluid and Respiratory Epithelium. Infect Immun. 1998;66(12):5948. | spa |
dc.relation.references | Huertas Méndez NDJ, Vargas Casanova Y, Gómez Chimbi AK, Hernández E, Leal Castro AL, Melo Diaz JM, et al. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules. 2017;22(3):1–10 | spa |
dc.relation.references | Huertas N de J, Monroy ZJR, Medina RF, Castañeda JEG. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules. 2017;22(6). | spa |
dc.relation.references | Mejía E, Benítez J, Ortiz M. Péptidos antimicrobianos, una alternativa para el combate de la resistencia bacteriana/Antimicrobial peptides, an alternative to combat bacterial resistance. Acta Biológica Colomb. 2020;2(2):294–302. | spa |
dc.relation.references | Vargas-Casanova Y, Rodríguez-Mayor AV, Cardenas KJ, Leal-Castro AL, Muñoz-Molina LC, Fierro-Medina R, et al. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv. 2019 Mar;9(13):7239–45. | spa |
dc.relation.references | Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolym -Pept Sci Sect. 2002;66(4):236–48 | spa |
dc.relation.references | Hilchie AL, Wuerth K, Hancock REW. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol. 2013;9(12):761–8. | spa |
dc.relation.references | Hancock REW, Nijnik A, Philpott DJ. Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol. 2012;10(4):243–54 | spa |
dc.relation.references | Rivas-Santiago B, Castañeda-Delgado JE, Rivas Santiago CE, Waldbrook M, González-Curiel I, León-Contreras JC, et al. Ability of Innate Defence Regulator Peptides IDR-1002, IDR-HH2 and IDR-1018 to Protect against Mycobacterium tuberculosis Infections in Animal Models. PLoS One. 2013 Mar;8(3). | spa |
dc.relation.references | Tewary P, de la Rosa G, Sharma N, Rodriguez LG, Tarasov SG, Howard OMZ, et al. BETA DEFENSIN 2 AND 3 PROMOTE THE UPTAKE OF SELF OR CpG DNA, ENHANCE IFN-α PRODUCTION BY HUMAN PLASMACYTOID DENDRITIC CELLS AND PROMOTE INFLAMMATION. J Immunol. 2013 Jul;191(2):865. | spa |
dc.relation.references | Bechinger B, Gorr SU. Antimicrobial Peptides: Mechanisms of Action and Resistance. J Dent Res. 2017 Mar;96(3):254 | spa |
dc.relation.references | Cárdenas Espinosa LP. Dinámica molecular como técnica de simulación. Rev Habitus Semilleros Investig. 2009;(1):29–32. | spa |
dc.relation.references | Mihajlovic M, Lazaridis T. Antimicrobial Peptides in Toroidal and Cylindrical Pores. Biochim Biophys Acta. 2010 Aug;1798(8):1485. | spa |
dc.relation.references | Lipkin RB, Lazaridis T. Implicit Membrane Investigation of the Stability of Antimicrobial Peptide β-barrels and arcs. J Membr Biol. 2015 Nov;248(3):469 | spa |
dc.relation.references | Lorenzón EN, Riske KA, Troiano GF, Da Hora GCA, Soares TA, Cilli EM. Effect of dimerization on the mechanism of action of aurein 1.2. Biochim Biophys Acta - Biomembr. 2016 Jun;1858(6):1129–38. | spa |
dc.relation.references | Departamento de Química Física U de V. Espectroscopia de resonancia magnética nuclear. Fundam Química Orgánica. 2011;193–207 | spa |
dc.relation.references | Lazaridis T, He Y, Prieto L. Membrane Interactions and Pore Formation by the Antimicrobial Peptide Protegrin. Biophys J. 2013 Feb;104(3):633 | spa |
dc.relation.references | Raheem N, Kumar P, Lee E, Cheng JTJ, Hancock REW, Straus SK. Insights into the mechanism of action of two analogues of aurein 2.2. Biochim Biophys Acta - Biomembr. 2020 Jun;1862(6):183262 | spa |
dc.relation.references | Pandit G, Ilyas H, Ghosh S, Bidkar AP, Mohid SA, Bhunia A, et al. Insights into the Mechanism of Antimicrobial Activity of Seven-Residue Peptides. J Med Chem. 2018;61(17):7614–29. | spa |
dc.relation.references | Laadhari M, Arnold AA, Gravel AE, Separovic F, Marcotte I. Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by 2H solidstate NMR. Biochim Biophys Acta - Biomembr. 2016 Dec;1858(12):2959–64. | spa |
dc.relation.references | Gonzáles MCR, Castellon-Uribe J. Microscopio de Fuerza Atómica. Eninvie. 2005;6. | spa |
dc.relation.references | Majewska M, Zamlynny V, Pieta IS, Nowakowski R, Pieta P. Interaction of LL37 human cathelicidin peptide with a model microbial-like lipid membrane. Bioelectrochemistry. 2021 Oct;141:107842. | spa |
dc.relation.references | Kim SY, Pittman AE, Zapata-Mercado E, King GM, Wimley WC, Hristova K. Mechanism of Action of Peptides That Cause the pH-Triggered Macromolecular Poration of Lipid Bilayers. J Am Chem Soc. 2019;141(16):6706–18 | spa |
dc.relation.references | Mescola A, Ragazzini G, Alessandrini A. Daptomycin Strongly Affects the Phase Behavior of Model Lipid Bilayers. J Phys Chem B. 2020;124(39):8562–71. | spa |
dc.relation.references | Malanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals. 2016 Sep;9(3) | spa |
dc.relation.references | Microscopio Confocal de Barrido Láser - CONICET Rosario | spa |
dc.relation.references | Jang SA, Kim H, Lee JY, Shin JR, Kim DJ, Cho JH, et al. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Peptides [Internet]. 2012;34(2):283–9. Available from: http://dx.doi.org/10.1016/j.peptides.2012.01.015 | spa |
dc.relation.references | Xi D, Wang X, Teng D, Mao R, Zhang Y, Wang X, et al. Mechanism of action of the tri-hybrid antimicrobial peptide LHP7 from lactoferricin, HP and plectasin on Staphylococcus aureus. BioMetals. 2014;27(5):957–68. | spa |
dc.relation.references | ¿Qué es el Microscopio Electrónico de Transmisión? | spa |
dc.relation.references | Raschig J, Mailänder-Sánchez D, Berscheid A, Berger J, Strömstedt AA, Courth LF, et al. Ubiquitously expressed Human Beta Defensin 1 (hBD1) forms bacteriaentrapping nets in a redox dependent mode of action. PLoS Pathog. 2017 Mar;13(3). | spa |
dc.relation.references | Ipohorski M, Bozzano PB. Microscopía electrónica de barrido en la caracterización de materiales. Cienc Invest. 2013;63(3):43–53. | spa |
dc.relation.references | Microscopía electrónica de barrido de emisión de campo : Servicio de Microscopía Electrónica : UPV. | spa |
dc.relation.references | Microscopía Electrónica de Barrido (SEM/FESEM) - Universidad de Almería. | spa |
dc.relation.references | Hong J, Guan W, Jin G, Zhao H, Jiang X, Dai J. Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry. Microbiol Res. 2015 Jan;170:69–77 | spa |
dc.relation.references | Huang Y, He L, Li G, Zhai N, Jiang H, Chen Y. Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell. 2014 Aug;5(8):631. | spa |
dc.relation.references | Así funciona un microscopio de fluorescencia - Cromtek | spa |
dc.relation.references | Memariani H, Shahbazzadeh D, Sabatier JM, Memariani M, Karbalaeimahdi A, Bagheri KP. Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa. Biochem Biophys Res Commun. 2016;479(1):103–8 | spa |
dc.relation.references | Yang S, Dong Y, Aweya JJ, Xie T, Zeng B, Zhang Y, et al. Antimicrobial activity and acting mechanism of Tegillarca granosa hemoglobin-derived peptide (TGH1) against Vibrio parahaemolyticus. Microb Pathog. 2020;147:104302 | spa |
dc.relation.references | Singh S, Nimmagadda A, Su M, Wang M, Teng P, Cai J. Lipidated α/α-AA heterogeneous peptides as antimicrobial agents. Eur J Med Chem. 2018 Jul;155:398 | spa |
dc.relation.references | Wang K, Yan J, Dang W, Liu X, Chen R, Zhang J, et al. Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista. Peptides. 2013;39(1):80–8. | spa |
dc.relation.references | Xie J, Gou Y, Zhao Q, Wang K, Yang X, Yan J, et al. Antimicrobial activities and membrane-active mechanism of CPF-C1 against multidrug-resistant bacteria, a novel antimicrobial peptide derived from skin secretions of the tetraploid frog Xenopus clivii. J Pept Sci. 2014;20(11):876–84 | spa |
dc.relation.references | Xie J, Gou Y, Zhao Q, Li S, Zhang W, Song J, et al. Antimicrobial activities and action mechanism studies of transportan 10 and its analogues against multidrug-resistant bacteria. J Pept Sci. 2015;21(7):599–607. | spa |
dc.relation.references | CITOMETRÍA DE FLUJO: VÍNCULO ENTRE LA INVESTIGACIÓN BÁSICA Y LA APLICACIÓN CLÍNICA. | spa |
dc.relation.references | Jocelyn Carolina P-L, Wendolaine S-C, Héctor R-R, Carlos J. Portafolio Científico. 18(2):julio-diciembre | spa |
dc.relation.references | Yasir M, Dutta D, Willcox MDP. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS One. 2019 Jul;14(7). | spa |
dc.relation.references | Akbari R, Hakemi Vala M, Hashemi A, Aghazadeh H, Sabatier JM, Pooshang Bagheri K. Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria. Amino Acids. 2018;50(9):1231–43. | spa |
dc.relation.references | Madanchi H, Ebrahimi Kiasari R, Seyed Mousavi SJ, Johari B, Shabani AA, Sardari S. Design and Synthesis of Lipopolysaccharide-Binding Antimicrobial Peptides Based on Truncated Rabbit and Human CAP18 Peptides and Evaluation of Their Action Mechanism. Probiotics Antimicrob Proteins. 2020;12(4):1582–93. | spa |
dc.relation.references | Lee B, Hwang JS, Lee DG. Antibacterial action of lactoferricin B like peptide against Escherichia coli: reactive oxygen species-induced apoptosis-like death. J Appl Microbiol. 2020;129(2):287–95. | spa |
dc.relation.references | Sun C, Li Y, Cao S, Wang H, Jiang C, Pang S, et al. Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences. Int J Mol Sci. 2018;19(10):1–20. | spa |
dc.relation.references | Chen X, Hirt H, Li Y, Gorr SU, Aparicio C. Antimicrobial GL13K Peptide Coatings Killed and Ruptured the Wall of Streptococcus gordonii and Prevented Formation and Growth of Biofilms. PLoS One. 2014 Nov;9(11) | spa |
dc.relation.references | Zhanel GG, Schweizer F, Karlowsky JA. Oritavancin: Mechanism of Action. Clin Infect Dis. 2012 Apr;54(suppl_3):S214–9 | spa |
dc.relation.references | Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim Biophys Acta - Biomembr. 2016 May;1858(5):936–46 | spa |
dc.relation.references | Lehotzkya RE, Partchb CL, Mukherjeea S, Casha HL, Goldman WE, Gardner KH, et al. Molecular basis for peptidoglycan recognition by a bactericidal lectin. Proc Natl Acad Sci U S A. 2010 Apr;107(17):7722–7 | spa |
dc.relation.references | Florez Ariza A, Guerra Giraldez D. Crío-miCrosCopía eleCtróniCa. resolviendo la estruCtura moleCular de la vida al detalle atómiCo Cryo-electron microscopy. Solving the molecular structure of life at the atomic detail | spa |
dc.relation.references | Mularski A, Wilksch JJ, Hanssen E, Strugnell RA, Separovic F. Atomic force microscopy of bacteria reveals the mechanobiology of pore forming peptide action. Biochim Biophys Acta - Biomembr. 2016 Jun;1858(6):1091–8 | spa |
dc.relation.references | DeCS. | spa |
dc.relation.references | Juliano SA, Serafim LF, Duay SS, Heredia Chavez M, Sharma G, Rooney M, et al. A Potent Host Defense Peptide Triggers DNA Damage and Is Active against Multidrug-Resistant Gram-Negative Pathogens. ACS Infect Dis. 2020;6(5):1250– 63 | spa |
dc.relation.references | Garner MM, Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 1981 Jul;9(13):3047–60. | spa |
dc.relation.references | Battista F, Oliva R, Vecchio P Del, Winter R, Petraccone L. Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III. Int J Mol Sci 2021, Vol 22, Page 2857. 2021 Mar;22(6):2857. | spa |
dc.relation.references | Han X, Kou Z, Jiang F, Sun X, Shang D. Interactions of designed trp-containing antimicrobial peptides with dna of multidrug-resistant-pseudomonas aeruginosa. DNA Cell Biol. 2021;40(2):414–24 | spa |
dc.relation.references | Zhong L, Liu J, Teng S, Xie Z. Identification of a Novel Cathelicidin from the Deinagkistrodon acutus Genome with Antibacterial Activity by Multiple Mechanisms. Toxins (Basel). 2020 Dec;12(12). | spa |
dc.relation.references | Hao G, Shi YH, Tang YL, Le GW. The intracellular mechanism of action on Escherichia coli of BF2-A/C, two analogues of the antimicrobial peptide Buforin 2. J Microbiol. 2013;51(2):200–6 | spa |
dc.relation.references | Ho YH, Shah P, Chen YW, Chen CS. Systematic Analysis of Intracellulartargeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline–Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays. Mol Cell Proteomics. 2016 Jun;15(6):1837 | spa |
dc.relation.references | Sola R, Mardirossian M, Beckert B, De Luna LS, Prickett D, Tossi A, et al. Characterization of Cetacean Proline-Rich Antimicrobial Peptides Displaying Activity against ESKAPE Pathogens. Int J Mol Sci 2020, Vol 21, Page 7367. 2020 Oct;21(19):7367. | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | Extracelular | |
dc.subject.lemb | Intracelular | |
dc.subject.lemb | Antibacteriano | |
dc.subject.proposal | PAMs | spa |
dc.subject.proposal | Mecanismo de acción | spa |
dc.subject.proposal | In-vivo | spa |
dc.subject.proposal | In-vitro | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |