Mostrar el registro sencillo del ítem
Producción de bácmidos recombinantes del ectodominio de la proteína del circumsporozoito (EcCSP) y de la región ll de la proteína de Unión al Duffy (DBP-RII) de Plasmodium vivax.
dc.contributor.advisor | Sánchez, Ruth Mélida | |
dc.contributor.advisor | Arévalo Pinzón, Gabriela | |
dc.contributor.author | Beltrán Pérez, María Camila | |
dc.date.accessioned | 2022-05-06T04:35:59Z | |
dc.date.available | 2022-05-06T04:35:59Z | |
dc.date.issued | 2021-11 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/5546 | |
dc.description.abstract | Plasmodium vivax es una de las especies más ampliamente distribuidas a nivel mundial, pero desafortunadamente no se ha podido investigar a profundidad los mecanismos de invasión debido a la incapacidad de realizar un cultivo continuo in vitro. Por lo tanto, es necesario encontrar diferentes alternativas para estudiar las interacciones del parásito con las células hospederas. Dentro de las estrategias abordadas por distintos investigadores, se encuentra la evaluación de las interacciones receptor-ligando mediante el uso de proteínas recombinantes derivadas de P. vivax y células hospederas. A partir de estos experimentos se han elucidado algunas interacciones claves en el proceso de invasión de P. vivax. Teniendo en cuenta que esta es una estrategia adecuada para medir las interacciones entre el patógeno y la célula hospedera, es necesario la producción de los controles de interacción positivos que puedan usarse para validar las nuevas interacciones de P. vivax. Motivo por el cual, este trabajo se enfocó en la producción de bácmidos recombinantes que contienen la región que codifica para el ectodominio de la proteína circumsporozoito (CSP) y de la región II de la proteína de unión a Duffy (DBP). Para esto, se amplificaron las dos regiones de cada proteína y se clonaron en el vector PfastBac-HTC obteniendo plásmidos recombinantes llamados pFastBacHT-C-EcPvCSP y pFastBacHT-C-PvDBP-RII, que se utilizaron para transformar células DH10Bac que contenían el DNA viral generando bácmidos recombinantes bMON14272-PvDBP-RII y bMON14272-EcPvCSP con una concentración para de 158,9 ng/μl y 430 ng/μl respectivamente, los cuales fueron aislados y serán utilizados en posteriores estudios para transfectar células Sf9, encargadas de la producción de las partículas virales y de la producción de las proteínas recombinantes. Estas proteínas serán utilizadas como controles para evaluar interacciones proteína-proteína de diferentes antígenos de P. vivax en busca de métodos de control contra esta especie parasitaria. | spa |
dc.description.abstract | Plasmodium vivax is one of the most widely distributed species worldwide, but unfortunately it has not been possible to investigate in depth the mechanisms of invasion due to the inability to carry out a continuous culture in vitro. Therefore, it is necessary to find different alternatives to study the interactions of the parasite with host cells. Among the strategies addressed by different researchers is the evaluation of receptor-ligand interactions through the use of recombinant proteins derived from P. vivax and host cells. From these experiments some key interactions in the invasion process of P. vivax have been elucidated. Taking into account that this is a suitable strategy to measure the interactions between the pathogen and the host cell, it is necessary to produce positive interaction controls that can be used to validate the new interactions of P. vivax. This is why this work focused on the production of recombinant bacmids that contain the region that codes for the ectodomain of the circumsporozoite protein (CSP) and the region II of the Duffy-binding protein (DBP). For this, the two regions of each protein were amplified and cloned in the PfastBac-HTC vector obtaining recombinant plasmids called pFastBacHT-C-EcPvCSP and pFastBacHT-C-PvDBP-RII, which were used to transform DH10Bac cells that contained the viral DNA. generating recombinant bacmids bMON14272-PvDBP-RII and bMON14272-EcPvCSP with a concentration of 158.9 ng / μl and 430 ng / μl respectively, which were isolated and will be used in subsequent studies to transfect Sf9 cells, responsible for the production of viral particles and the production of recombinant proteins. These proteins will be used as controls to evaluate protein-protein interactions of different P. vivax antigens in search of control methods against this parasitic species. | eng |
dc.description.tableofcontents | 1. INTRODUCCIÓN 1 2. MARCO TEÓRICO 2 2.1 Antecedentes 2 2.2 Malaria 6 2.3 Etiología y ciclo de vida 7 2.4 Patogenia 8 2.5 Cuadro clínico 8 2.6 Plasmodium vivax 9 2.7 Proteína de unión al Duffy10 2.8 Proteína del circumsporozoito 11 2.9 Sistemas de expresión de proteínas recombinantes 12 2.9.1 Sistema de expresión de Baculovirus 12 3. OBJETIVOS 16 3.1 Objetivo general 16 3.2 Objetivos específicos 16 4. DISEÑO METODOLÓGICO 16 4.1 Técnicas y procedimientos 16 4.1.1 Diseño de cebadores 17 4.1.2 PCR para amplificación de genes 18 4.1.3 Tratamiento enzimático y ligación 18 4.1.4 Transformación en bacterias E. coli JM109 19 4.1.5 Análisis y selección de colonias recombinantes 20 4.1.6 Purificación de los plásmidos y verificación mediante tratamiento enzimático 20 4.1.7 Análisis de secuencias plasmídicas 21 4.1.8 Transformación en bacterias E.coli DH10Bac 21 4.1.9 Análisis y selección de colonias recombinantes 22 4.1.10 Purificación de los bácmidos recombinantes y cuantificación de DNA 23 5. RESULTADOS 24 5.1 Obtención de los genes que codifican para EcPvCSP y PvDBP-RII por PCR 25 5.2 Los fragmentos génicos que codifican EcPvCSP y PvDBP-RII fueron clonados exitosamente en el vector pFASTBacHT-C 26 5.3 PCRs de colonia de E. coli JM109 para EcPvCSP y la región II de PvDBP 27 5.4 Extracción de plásmido recombinante, tratamiento enzimático del plásmido con EcPvCSP y PvDBP-RII 29 5.5 Secuencias del EcPvCSP y de PvDBP-RII presentan varios cambios respecto a la cepa de referencia Sal-1 31 5.6 Transformación de plásmidos recombinantes en E. coli DH10Bac 34 5.7 PCRs de colonia de E. coli DH10Bac con el EcPvCSP y PvDBP-RII 34 5.8 Obtención y cuantificación de bácmidos recombinantes36 6. Discusión 37 7. Conclusiones 44 | spa |
dc.format.extent | 64.p | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021 | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Producción de bácmidos recombinantes del ectodominio de la proteína del circumsporozoito (EcCSP) y de la región ll de la proteína de Unión al Duffy (DBP-RII) de Plasmodium vivax. | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Fact sheet about Malaria [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.who.int/news-room/fact-sheets/detail/malaria | spa |
dc.relation.references | MALARIA PE XIII 2020.pdf [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.ins.gov.co/buscador-eventos/Informesdeevento/MALARIA%20PE%20XIII%202020.pdf | spa |
dc.relation.references | Adams JH, Mueller I. The Biology of Plasmodium vivax. Cold Spring Harb Perspect Med. 9 de enero de 2017;7(9):a025585. | spa |
dc.relation.references | White NJ, Imwong M. Relapse. Adv Parasitol. 2012;80:113-50. | spa |
dc.relation.references | Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. septiembre de 2009;9(9):555-66. | spa |
dc.relation.references | Plasmodium vivax in vitro continuous culture: the spoke in the wheel | Malaria Journal | Full Text [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://malariajournal.biomedcentral.com/articles/10.1186/s12936-018-2456-5 | spa |
dc.relation.references | Haynes JD, Diggs CL, Hines FA, Desjardins RE. Culture of human malaria parasites Plasmodium falciparum. Nature. 28 de octubre de 1976;263(5580):767-9. | spa |
dc.relation.references | Trager W. A new method for intraerythrocytic cultivation of malaria parasites (Plasmodium coatneyi and P. falciparum). J Protozool. mayo de 1971;18(2):239-42. | spa |
dc.relation.references | Roobsoong W, Tharinjaroen CS, Rachaphaew N, Chobson P, Schofield L, Cui L, et al. Improvement of culture conditions for long-term in vitro culture of Plasmodium vivax. Malar J. 5 de agosto de 2015;14(1):297. | spa |
dc.relation.references | A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax | Blood | American Society of Hematology [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://ashpublications.org/blood/article/118/13/e74/29320/A-reliable-ex-vivo-invasion-assay-of-human | spa |
dc.relation.references | SciELO - Brasil - The Duffy binding protein as a key target for a Plasmodium vivax vaccine: lessons from the Brazilian Amazon The Duffy binding protein as a key target for a Plasmodium vivax vaccine: lessons from the Brazilian Amazon [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.scielo.br/j/mioc/a/khygqzpNpyKVfRfgw5TqDhn/?lang=en | spa |
dc.relation.references | Infección hepática por parásitos de la malaria y biología exoeritrocítica [Internet]. [citado 18 de agosto de 2021]. Disponible en: http://perspectivesinmedicine.cshlp.org/content/7/6/a025486 | spa |
dc.relation.references | World-Malaria-Report-2019-briefing-kit-es.pdf [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.who.int/malaria/publications/world-malaria-report-2019/World-Malaria-Report-2019-briefing-kit-es.pdf | spa |
dc.relation.references | Mercereau-Puijalon O, Ménard D. Plasmodium vivax and the Duffy antigen: A paradigm revisited. Transfus Clin Biol. 1 de septiembre de 2010;17(3):176-83. | spa |
dc.relation.references | Miller LH, Mason SJ, Clyde DF, McGinniss MH. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 5 de agosto de 1976;295(6):302-4. | spa |
dc.relation.references | Barnwell JW, Galinski MR. Plasmodium vivax: a glimpse into the unique and shared biology of the merozoite. Ann Trop Med Parasitol. abril de 1995;89(2):113-20. | spa |
dc.relation.references | Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med. 1 de agosto de 1994;180(2):497-506 | spa |
dc.relation.references | Frontiers | What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates? | Immunology [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.frontiersin.org/articles/10.3389/fimmu.2017.00126/full | spa |
dc.relation.references | Plasmodium vivax DBP Binding to Aotus nancymaae Erythrocytes Is Duffy Antigen Dependent [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://bioone.org/journals/journal-of-parasitology/volume-96/issue-1/GE-2281.1/Plasmodium-vivax-DBP-Binding-to-Aotus-nancymaae-Erythrocytes-Is-Duffy/10.1645/GE-2281.1.short | spa |
dc.relation.references | Batchelor JD, Zahm JA, Tolia NH. Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC. Nat Struct Mol Biol. agosto de 2011;18(8):908-14. | spa |
dc.relation.references | Kano FS, de Souza AM, de Menezes Torres L, Costa MA, Souza-Silva FA, Sanchez BAM, et al. Susceptibility to Plasmodium vivax malaria associated with DARC (Duffy antigen) polymorphisms is influenced by the time of exposure to malaria. Sci Rep. 14 de septiembre de 2018;8:13851 | spa |
dc.relation.references | Mendes C, Dias F, Figueiredo J, Mora VG, Cano J, de Sousa B, et al. Duffy negative antigen is no longer a barrier to Plasmodium vivax--molecular evidences from the African West Coast (Angola and Equatorial Guinea). PLoS Negl Trop Dis. junio de 2011;5(6):e1192 | spa |
dc.relation.references | Hu Y, Wang L, Mbenda HGN, Soe MT, Yu C, Feng H, et al. Genetic diversity, natural selection and haplotype grouping of Plasmodium vivax Duffy-binding protein genes from eastern and western Myanmar borders. Parasit Vectors. 20 de noviembre de 2019;12:546. | spa |
dc.relation.references | Popovici J, Roesch C, Carias LL, Khim N, Kim S, Vantaux A, et al. Amplification of Duffy binding protein-encoding gene allows Plasmodium vivax to evade host anti-DBP humoral immunity. Nat Commun. 19 de febrero de 2020;11:953. | spa |
dc.relation.references | Singh K, Mukherjee P, Shakri AR, Singh A, Pandey G, Bakshi M, et al. Malaria vaccine candidate based on Duffy-binding protein elicits strain transcending functional antibodies in a Phase I trial. Npj Vaccines. 28 de septiembre de 2018;3(1):1-10. | spa |
dc.relation.references | Invasión de Plasmodium vivax de eritrocitos humanos inhibida por anticuerpos dirigidos contra la proteína de unión Duffy - PubMed [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18092885/ | spa |
dc.relation.references | Cole-Tobian JL, Michon P, Biasor M, Richards JS, Beeson JG, Mueller I, et al. Strain-specific duffy binding protein antibodies correlate with protection against infection with homologous compared to heterologous plasmodium vivax strains in Papua New Guinean children. Infect Immun. septiembre de 2009;77(9):4009-17. | spa |
dc.relation.references | Ntumngia FB, Adams JH. Design and Immunogenicity of a Novel Synthetic Antigen Based on the Ligand Domain of the Plasmodium vivax Duffy Binding Protein. Clin Vaccine Immunol CVI. enero de 2012;19(1):30-6. | spa |
dc.relation.references | Payne RO, Silk SE, Elias SC, Milne KH, Rawlinson TA, Llewellyn D, et al. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies. JCI Insight. 2(12):e93683 | spa |
dc.relation.references | Yoshida N, Nussenzweig RS, Potocnjak P, Nussenzweig V, Aikawa M. Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite. Science. 4 de enero de 1980;207(4426):71-3. | spa |
dc.relation.references | González JM, Hurtado S, Arévalo-Herrera M, Herrera S. Variants of the Plasmodium vivax circumsporozoite protein (VK210 and VK247) in Colombian isolates. Mem Inst Oswaldo Cruz. julio de 2001;96:709-12. | spa |
dc.relation.references | Antigenic Diversity of the Plasmodium vivax Circumsporozoite Protein in Parasite Isolates of Western Colombia in: The American Journal of Tropical Medicine and Hygiene Volume 84 Issue 2_Suppl (2011) [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.ajtmh.org/view/journals/tpmd/84/2_Suppl/article-p51.xml | spa |
dc.relation.references | A Novel Chimeric Plasmodium vivax Circumsporozoite Protein Induces Biologically Functional Antibodies That Recognize both VK210 and VK247 Sporozoites | Infection and Immunity [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://journals.asm.org/doi/10.1128/iai.01667-06?permanently=true& | spa |
dc.relation.references | Santos E de A, Sucupira IMC, de Oliveira Martins BM, de Paula Souza e Guimarães RJ, Catete CP, de Souza RTL, et al. VK210 and VK247 genotypes of Plasmodium vivax in anopheline mosquitoes from Brazilian Amazon. Sci Rep. 28 de junio de 2019;9(1):9391. | spa |
dc.relation.references | Costa KM de M, Almeida WAF de, Magalhães IB, Montoya R, Moura MS, Lacerda MVG de. Malária em Cruzeiro do Sul (Amazônia Ocidental brasileira): análise da série histórica de 1998 a 2008. Rev Panam Salud Pública. noviembre de 2010;28:353-60. | spa |
dc.relation.references | Greenwood BM, Bojang K, Whitty CJ, Targett GA. Malaria. The Lancet. 23 de abril de 2005;365(9469):1487-98. | spa |
dc.relation.references | Phillips MA, Burrows JN, Manyando C, van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nat Rev Dis Primer. 3 de agosto de 2017;3(1):1-24. | spa |
dc.relation.references | Mecanismos de patogenia en la malaria por Plasmodium falciparum [Internet]. [citado 2 de septiembre de 2021]. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572012000500012 | spa |
dc.relation.references | Aly ASI, Vaughan AM, Kappe SHI. Malaria Parasite Development in the Mosquito and Infection of the Mammalian Host. Annu Rev Microbiol. 2009;63:195-221. | spa |
dc.relation.references | Contreras-Ochoa C, Ramsey JM. Gametocitos de Plasmodium vivax y Plasmodium falciparum: etapas relegadas en el desarrollo de vacunas. Salud Pública México. febrero de 2004;46(1):64-70. | spa |
dc.relation.references | Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A, et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A. 6 de febrero de 2007;104(6):1919-24. | spa |
dc.relation.references | Hosseini SM, Feng JJ. How Malaria Parasites Reduce the Deformability of Infected Red Blood Cells. Biophys J. 3 de julio de 2012;103(1):1-10. | spa |
dc.relation.references | Warrell DA, Gilles HM. Essential Malariology, 4Ed. CRC Press; 2017. 373 p. | spa |
dc.relation.references | Santa-Olalla Peralta P, Vazquez-Torres MC, Latorre-Fandos E, Mairal-Claver P, Cortina-Solano P, Puy-Azón A, et al. First autochthonous malaria case due to Plasmodium vivax since eradication, Spain, October 2010. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 14 de octubre de 2010;15(41):19684. | spa |
dc.relation.references | Global Epidemiology of Plasmodium vivax in: The American Journal of Tropical Medicine and Hygiene Volume 95 Issue 6_Suppl (2016) [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.ajtmh.org/view/journals/tpmd/95/6_Suppl/article-p15.xml | spa |
dc.relation.references | Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM. Vivax malaria. Am J Trop Med Hyg. diciembre de 2007;77(6 Suppl):79-87. | spa |
dc.relation.references | Reticulocyte and Erythrocyte Binding-Like Proteins Function Cooperatively in Invasion of Human Erythrocytes by Malaria Parasites | Infection and Immunity [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://journals.asm.org/doi/10.1128/iai.01021-10?permanently=true | spa |
dc.relation.references | Frontiers | Plasmodium vivax Cell Traversal Protein for Ookinetes and Sporozoites (CelTOS) Functionally Restricted Regions Are Involved in Specific Host-Pathogen Interactions | Cellular and Infection Microbiology [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.frontiersin.org/articles/10.3389/fcimb.2020.00119/full | spa |
dc.relation.references | Suwanarusk R, Cooke BM, Dondorp AM, Silamut K, Sattabongkot J, White NJ, et al. The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. J Infect Dis. 15 de enero de 2004;189(2):190-4. | spa |
dc.relation.references | Strategies for Understanding and Reducing the Plasmodium vivax and Plasmodium ovale Hypnozoite Reservoir in Papua New Guinean Children: A Randomised Placebo-Controlled Trial and Mathematical Model [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001891 | spa |
dc.relation.references | Plasmodium spp. [Internet]. Scoop.it. [citado 18 de agosto de 2021]. Disponible en: https://www.scoop.it/topic/plasmodium-ssp | spa |
dc.relation.references | Adams JH, Sim BK, Dolan SA, Fang X, Kaslow DC, Miller LH. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci. 1 de agosto de 1992;89(15):7085-9. | spa |
dc.relation.references | Singh SK, Hora R, Belrhali H, Chitnis CE, Sharma A. Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain. Nature. febrero de 2006;439(7077):741-4. | spa |
dc.relation.references | Ampudia E, Patarroyo MA, Patarroyo ME, Murillo LA. Genetic polymorphism of the Duffy receptor binding domain of Plasmodium vivax in Colombian wild isolates. Mol Biochem Parasitol. 1 de junio de 1996;78(1):269-72. | spa |
dc.relation.references | Baum J, Thomas AW, Conway DJ. Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax. Genetics. abril de 2003;163(4):1327-36. | spa |
dc.relation.references | Huang Y-T, Lu X-M, Jin X-B, Zhu J-Y. [Research advances on circumsporzoite protein of Plasmodium]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 30 de junio de 2012;30:238-42 | spa |
dc.relation.references | Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA, et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med. 14 de febrero de 2011;208(2):341-56. | spa |
dc.relation.references | Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection. | Journal of Experimental Medicine | Rockefeller University Press [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://rupress.org/jem/article/151/6/1504/48697/Monovalent-fragments-Fab-of-monoclonal-antibodies | spa |
dc.relation.references | Fernández-Arias C, Mashoof S, Huang J, Tsuji M. Circumsporozoite protein as a potential target for antimalarials. Expert Rev Anti Infect Ther. 3 de agosto de 2015;13(8):923-6. | spa |
dc.relation.references | Abyntek. Sistemas de expresión de proteínas recombinantes [Internet]. Abyntek Biopharma. 2018 [citado 18 de agosto de 2021]. Disponible en: https://www.abyntek.com/sistemas-de-expresion-de-proteinas-recombinantes/ | spa |
dc.relation.references | Lara ÁR. Producción de proteínas recombinantes en Escherichia coli. Rev Mex Ing Quím. agosto de 2011;10(2):209-23. | spa |
dc.relation.references | bactobac_man.pdf [Internet]. [citado 18 de agosto de 2021]. Disponible en: http://tools.thermofisher.com/content/sfs/manuals/bactobac_man.pdf | spa |
dc.relation.references | Valderrama JG, Villamizar L. Baculovirus: Hospederos y especificidad Baculovirus: Hosts and specificity. 2013;(2):13. | spa |
dc.relation.references | Rohrmann GF, Rohrmann GF. Baculovirus Molecular Biology. National Center for Biotechnology Information (US); 2011. | spa |
dc.relation.references | Structural divergence among genomes of closely related baculoviruses and its implications for baculovirus evolution - ScienceDirect [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0022201109000871 | spa |
dc.relation.references | SOLUCIONES ECOLÓGICAS CONTRA HELIOTHIS - Procampo productos... [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.procampo.net/blog/-b55.html?hcb=1?hcb=1 | spa |
dc.relation.references | Solís MM. Interacción insecto-baculovirus. Aplicaciones en la mejora de baculovirus como vector para la expresión heteróloga de proteínas. :176 | spa |
dc.relation.references | Liu F, Wu X, Li L, Liu Z, Wang Z. Use of baculovirus expression system for generation of virus-like particles: Successes and challenges. Protein Expr Purif. 1 de agosto de 2013;90(2):104-16. | spa |
dc.relation.references | How does KCM bacterial transformation work ? [Internet]. ResearchGate. [citado 2 de septiembre de 2021]. Disponible en: https://www.researchgate.net/post/How-does-KCM-bacterial-transformation-work | spa |
dc.relation.references | Invitrogen™ S.O.C. Medium - Medios para pruebas de sensibilidad Microbiología [Internet]. [citado 2 de septiembre de 2021]. Disponible en: https://www.fishersci.es/shop/products/invitrogen-s-o-c-ready-to-use-medium/11528896 | spa |
dc.relation.references | de Sousa TN, Kano FS, de Brito CFA, Carvalho LH. The Duffy binding protein as a key target for a Plasmodium vivax vaccine: lessons from the Brazilian Amazon. Mem Inst Oswaldo Cruz. agosto de 2014;109(5):608-17. | spa |
dc.relation.references | Garrido-Cardenas JA, Cebrián-Carmona J, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Analysis of Global Research on Malaria and Plasmodium vivax. Int J Environ Res Public Health. junio de 2019;16(11):1928. | spa |
dc.relation.references | Informe mundial sobre el paludismo 2018 [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.who.int/es/news-room/q-a-detail/world-malaria-report-2018 | spa |
dc.relation.references | Shretta R, Liu J, Cotter C, Cohen J, Dolenz C, Makomva K, et al. Malaria Elimination and Eradication. En: Holmes KK, Bertozzi S, Bloom BR, Jha P, editores. Major Infectious Diseases [Internet]. 3rd ed. Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2017 [citado 18 de agosto de 2021]. Disponible en: http://www.ncbi.nlm.nih.gov/books/NBK525190/ | spa |
dc.relation.references | MALARIA PE XIII 2020.pdf [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://www.ins.gov.co/buscador-eventos/Informesdeevento/MALARIA%20PE%20XIII%202020.pdf | spa |
dc.relation.references | Acharya P, Pallavi R, Chandran S, Chakravarti H, Middha S, Acharya J, et al. A glimpse into the clinical proteome of human malaria parasites Plasmodium falciparum and Plasmodium vivax. Proteomics Clin Appl. noviembre de 2009;3(11):1314-25. | spa |
dc.relation.references | Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ, et al. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science. 27 de agosto de 1993;261(5125):1182-4. | spa |
dc.relation.references | Ancsin JB, Kisilevsky R. A binding site for highly sulfated heparan sulfate is identified in the N terminus of the circumsporozoite protein: significance for malarial sporozoite attachment to hepatocytes. J Biol Chem. 21 de mayo de 2004;279(21):21824-32. | spa |
dc.relation.references | Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172. | spa |
dc.relation.references | Tripathi NK, Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol. 2019;7:420. | spa |
dc.relation.references | Felberbaum RS. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J. mayo de 2015;10(5):702-14. | spa |
dc.relation.references | Caubet J-C, Ponvert C. Vaccine allergy. Immunol Allergy Clin North Am. agosto de 2014;34(3):597-613, ix. | spa |
dc.relation.references | Deschuyteneer M, Elouahabi A, Plainchamp D, Plisnier M, Soete D, Corazza Y, et al. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in CervarixTM, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Hum Vaccin. mayo de 2010;6(5):407-19 | spa |
dc.relation.references | HU Y. Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol Sin. abril de 2005;26(4):405-16. | spa |
dc.relation.references | Boyce FM, Bucher NL. Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A. 19 de marzo de 1996;93(6):2348-52. | spa |
dc.relation.references | Production of recombinant proteins by microbes and higher organisms - PubMed [Internet]. [citado 24 de agosto de 2021]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19500547/ | spa |
dc.relation.references | Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology - PubMed [Internet]. [citado 24 de agosto de 2021]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25246703/ | spa |
dc.relation.references | Baculovirus as versatile vectors for protein expression in insect and mammalian cells [Internet]. [citado 24 de agosto de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610534/ | spa |
dc.relation.references | Aumiller JJ, Hollister JR, Jarvis DL. A transgenic insect cell line engineered to produce CMP–sialic acid and sialylated glycoproteins. Glycobiology. junio de 2003;13(6):497-507. | spa |
dc.relation.references | 1512152908.pdf [Internet]. [citado 18 de agosto de 2021]. Disponible en: http://iib.unsam.edu.ar/archivos/docencia/licenciatura/biotecnologia/2017/Virologia/1512152908.pdf | spa |
dc.relation.references | Método: ligamiento con T4 ADN ligasa [Internet]. Conogasi. 2018 [citado 18 de agosto de 2021]. Disponible en: http://conogasi.org/articulos/metodo-ligamiento-con-t4-adn-ligasa | spa |
dc.relation.references | Cepa bacteriana JM109 [Internet]. [citado 18 de agosto de 2021]. Disponible en: https://worldwide.promega.com/products/cloning-and-dna-markers/bacterial-strains-and-competent-cells/bacterial-strain-jm109/ | spa |
dc.relation.references | Ali SA, Chew YW. FabV/Triclosan Is an Antibiotic-Free and Cost-Effective Selection System for Efficient Maintenance of High and Medium -Copy Number Plasmids in Escherichia coli. PLoS ONE. 9 de junio de 2015;10(6):e0129547. | spa |
dc.relation.references | McConkey GA, Waters AP, McCutchan TF. The generation of genetic diversity in malaria parasites. Annu Rev Microbiol. 1990;44:479-98. | spa |
dc.relation.references | Airenne KJ. Improved generation of recombinant baculovirus genomes in Escherichia coli. Nucleic Acids Res. 1 de septiembre de 2003;31(17):101e-101. | spa |
dc.relation.references | Mota MM, Rodriguez A. Migration through host cells: the first steps of Plasmodium sporozoites in the mammalian host. Cell Microbiol. diciembre de 2004;6(12):1113-8. | spa |
dc.relation.references | Soares IF, López-Camacho C, Rodrigues-da-Silva RN, da Silva Matos A, de Oliveira Baptista B, Totino PRR, et al. Recombinant Plasmodium vivax circumsporozoite surface protein allelic variants: antibody recognition by individuals from three communities in the Brazilian Amazon. Sci Rep. 20 de agosto de 2020;10(1):14020 | spa |
dc.relation.references | Patil A, Orjuela-Sánchez P, da Silva-Nunes M, Ferreira MU. Evolutionary dynamics of the immunodominant repeats of the Plasmodium vivax malaria-vaccine candidate circumsporozoite protein (CSP). Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. marzo de 2010;10(2):298-303 | spa |
dc.relation.references | Souza-Neiras WC, Storti-Melo LM, Cassiano GC, Couto VSCA, Couto AARA, Soares IS, et al. Plasmodium vivax circumsporozoite genotypes: a limited variation or new subspecies with major biological consequences? Malar J. 23 de junio de 2010;9:178. | spa |
dc.relation.references | Leclerc MC, Durand P, Gauthier C, Patot S, Billotte N, Menegon M, et al. Meager genetic variability of the human malaria agent Plasmodium vivax. Proc Natl Acad Sci U S A. 5 de octubre de 2004;101(40):14455-60. | spa |
dc.relation.references | Pratt-Riccio LR, Baptista B de O, Torres VR, Bianco-Junior C, Perce-Da-Silva D de S, Riccio EKP, et al. Chloroquine and mefloquine resistance profiles are not related to the circumsporozoite protein (CSP) VK210 subtypes in field isolates of Plasmodium vivax from Manaus, Brazilian Amazon. Mem Inst Oswaldo Cruz. 12 de agosto de 2019;114:e190054. | spa |
dc.relation.references | Gaur D, Mayer DCG, Miller LH. Parasite ligand-host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int J Parasitol. diciembre de 2004;34(13-14):1413-29. | spa |
dc.relation.references | Wertheimer SP, Barnwell JW. Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp Parasitol. noviembre de 1989;69(4):340-50. | spa |
dc.relation.references | Xainli J, Adams JH, King CL. The erythrocyte binding motif of plasmodium vivax duffy binding protein is highly polymorphic and functionally conserved in isolates from Papua New Guinea. Mol Biochem Parasitol. diciembre de 2000;111(2):253-60. | spa |
dc.relation.references | Siddiqui AA, Xainli J, Schloegel J, Carias L, Ntumngia F, Shoham M, et al. Fine Specificity of Plasmodium vivax Duffy Binding Protein Binding Engagement of the Duffy Antigen on Human Erythrocytes. Infect Immun. agosto de 2012;80(8):2920-8. | spa |
dc.relation.references | Menard D, Chan ER, Benedet C, Ratsimbasoa A, Kim S, Chim P, et al. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains. PLoS Negl Trop Dis. noviembre de 2013;7(11):e2489. | spa |
dc.relation.references | Xainli J, Cole-Tobian JL, Baisor M, Kastens W, Bockarie M, Yazdani SS, et al. Epitope-specific humoral immunity to Plasmodium vivax Duffy binding protein. Infect Immun. mayo de 2003;71(5):2508-15. | spa |
dc.relation.references | King CL, Michon P, Shakri AR, Marcotty A, Stanisic D, Zimmerman PA, et al. Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage Plasmodium vivax infection. Proc Natl Acad Sci U S A. 17 de junio de 2008;105(24):8363-8. | spa |
dc.relation.references | Invasión de Plasmodium vivax de eritrocitos humanos inhibida por anticuerpos dirigidos contra la proteína de unión Duffy - PubMed [Internet]. [citado 25 de agosto de 2021]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18092885/ | spa |
dc.relation.references | Applications of recombinant proteins [Internet]. CUSABIO. [citado 19 de agosto de 2021]. Disponible en: https://www.cusabio.com/c-20272.html | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | Plasmodium vivax | |
dc.subject.lemb | Proteinas recombinantes | |
dc.subject.proposal | Baculovirus | spa |
dc.subject.proposal | Malaria | spa |
dc.subject.proposal | Ospedero-patógeno | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |