dc.contributor.advisor | Almonacid Urrego, Carmen Cecilia | |
dc.contributor.author | Pastrana Gomez, Cristian Andres | |
dc.date.accessioned | 2022-03-10T15:10:11Z | |
dc.date.available | 2022-03-10T15:10:11Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/4802 | |
dc.description.abstract | Las infecciones fúngicas han tenido un incremento en las últimas décadas y han
presentado un problema de transcendencia económica y social donde las
instituciones de salud y su personal han tenido dificultad en su atención, la
aparición de resistencia en ciertas cepas de Candida spp. lo que ha llevado a que
los tratamientos con agentes antifúngicos especialmente de la clase de los
triazoles presente un fracaso en este tipo de infecciones.
El objetivo de este trabajo es evaluar la actividad antifúngica in vitro de cuatro
compuestos triazólicos (tetrahidrofuranosyl-1,2,3 – triazol), empleando la técnica de
microdilución en microplaca propuesto por el CLSI documento M27-S4 del año
2012 para levaduras del género Candida ATCC, determinar su concentración
mínima inhibitoria y criterios de susceptibilidad.
Se emplearon cuatro compuestos triazólicos y cinco cepas de Candida ATCC:
Candida albicans ATCC 10231, Candida albicans ATCC 90028 , Candida glabrata
ATCC 26512, Candida parapsilosis ATCC 22019, Candida krusei ATCC 6258 . Las
cepas fueron expuestas a concentraciones de 16 µg/mL – 0,03 µg/mL, frente a los
cuatro compuestos triazólicos sintetizados en el CIQS (Centro de Investigación de
Química Sustentable), siguiendo la técnica de microdilución en microplaca como lo
establece el CLSI, utilizando como antifúngico control al Fluconazol e incubando las
placas a 35°C por 24 horas. La concentración mínima inhibitoria de los compuestos
oscilan entre 0,125 µg/mL – 16 µg/mL, comparado con el Fluconazol que fue de 2
µg/mL – 16 µg/mL.
Los derivados triazólicos sintetizados en el CIQS muestran un efecto antifúngico
eficaz in vitro en las cepas de Candida ATCC, por lo que se recomienda llevar a
cabo estudios microbiológicos in vivo para asegurar la eficacia de estos
compuestos en infecciones fúngicas desarrollada por Candida spp. | spa |
dc.description.abstract | Fungal infections have increased in recent decades and have presented a problem
of economic and social significance, where health institutions and their staff have
had difficulty in their care, the emergence of resistance in the strains of Candida sp.
That has led to treatments with antifungal agents, specially the class of azoles,
present a failure in this type of infections.
The objective of this work is to evaluate the in vitro antifungal activity of four triazole
compounds (tetrahidrofuranosyl-1,2,3- triazol) , using the microplate microdilution
technique proposed by the CLSI document M27-S4 of the year 2012 for yeast of
Candida genus, determine its minimum inhibitory concentration and susceptibility
criteria.
Four triazole compounds and five strains of Candida ATCC were used: Candida
albicans 10231 ATCC, Candida albicans ATCC 90028, Candida glabrata ATCC
26512, Candida parapsilosis ATCC 22019, Candida krusei ATCC 6258. Strains
were exposed to concentrations of 16 µg/mL – 0,03µg/mL, compared to the four
triazoles synthesized in the CIQS (Sustainable Chemistry Research Center),
following the microplate microdilution technique as established by the CLSI, using
Fluconazole as antifungal control and incubating the plates at 35°C for 24 hours.
The minimum inhibitory concentration of the compounds ranged between 0,125
µg/mL – 16 µg/mL, compared with Fluconazole which was 2 µg/mL – 16 µg/mL.
The triazole derivatives synthesized in the CIQS show an effective antifungal effect
in vitro in the strains of Candida ATCC, for which it is recommended to carry out
microbiological studies in vivo to ensure the efficacy of these compounds in fungal
infections developed by Candida spp. | eng |
dc.description.tableofcontents | RESUMEN 1
SUMMARY 3
INTRODUCCIÓN 5
OBJETIVOS 7
1. ANTECEDENTES 8
2. MARCO TEÓRICO 13
2.1 GENERALIDADES DE LAS LEVADURAS 13
2.1.1 Enfermedades causadas por levaduras 14
2.2 LEVADURAS DEL GÉNERO CANDIDA 15
2.2.1 Características microbiológicas del género Candida 15
2.2.2 Taxonomía del género Candida 16
2.2.3 Características metabólicas 17
2.2.4 Factores de virulencia 17
2.3 CANDIDIASIS 18
2.3.1 TIPOS DE CANDIDIASIS 19
2.4 EPIDEMIOLOGIA DE LA CANDIDIASIS A NIVEL MUNDIAL Y EN
COLOMBIA 21
2.5 AGENTES ANTIFÚNGICOS 26
2.5.1 Clasificación de los antifúngicos 27
2.5.2 Estructura de los antifúngicos 28
2.6 RESISTENCIA A LOS ANTIFÚNGICOS 34
2.6.1 Resistencia a Azoles 35
2.6.2 Resistencia a Equinocandinas 35
2.6.3 Resistencia a Polienos 35
2.7 CEPAS DE REFERENCIA CANDIDA ATCC 36
2.7.1 Candida albicans ATCC 10231 36
2.7.2 Candida albicans ATCC 90028 37
2.7.3 Candida glabrata ATCC 26512 37
2.7.4 Candida parapsilosis ATCC 22019 38
2.7.5 Candida krusei ATCC 6258 38
2.8 DETERMINACIÓN DE LA ACTIVIDAD ANTIFÚNGICA 39
2.8.1 Método de dilución en microplaca para levaduras de la CLSI (M27-
S4) 40
2.8.2 Preparación del inoculo 41
2.8.3 Inóculo para Candida spp 41
2.8.4 Inoculación, incubación y lectura de la placa 42
2.8.5 Control de pureza del cultivo 42
2.8.6 Puntos de corte de la sensibilidad de Cándida spp. frente al FLC 42
3. DISEÑO METODOLÓGICO 44
3.1 PREGUNTA DE INVESTIGACIÓN 44
3.2 TIPO DE ESTUDIO 44
3.3 UNIVERSO 44
3.4 MUESTRA 44
3.5 HIPOTESIS 47
3.6 VARIABLES 48
3.6.1 Variable independiente 48
3.6.2 Variable dependiente 48
3.6.3 Indicadores 48
3.7 MATERIALES 48
4. PROCESAMIENTO 49
4.1 Medio RPMI 1640 49
4.2 Preparación del inóculo 50
4.3 Preparación de la solución madre y diluciones de los cuatro compuestos
antifúngicos en las microplacas 51
4.4 Preparación de la solución madre y las diluciones seriadas del Fluconazol
en las microplacas. 53
4.5 Incubación, Interpretación y Lectura de las microplacas 56
4.6 Recolección y análisis de datos 57
5. RESULTADOS 58
6. DISCUSIÓN 68
7. CONCLUSIONES 71
8. RECOMENDACIONES 72
9. ANEXOS 73
REFERENCIAS BIBLIOGRAFICAS 84 | spa |
dc.format.extent | 94p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2018 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Evaluación de la sensibilidad antimicotica de los Triazoles, Tetrahidrofuranosyl- 1,2,3 – Triazol, en cinco especies de Candida Atcc de importancia clínica | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.identifier.barcode | 58421 | |
dc.publisher.faculty | Facultad de Ciencias Sociales | spa |
dc.publisher.place | Bogotá D.C | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Arendrup MC. Epidemiology of invasive candidiasis. Curr Opin Crit Care.
2010;16(5):445–52. | spa |
dc.relation.references | Gómez Quintero CH. Resistencia de levaduras del género Candida al
fluconazol. Infectio. 2010;14:S172–80. | spa |
dc.relation.references | Falagas ME, Roussos N, Vardakas KZ. Relative frequency of albicans and
the various non-albicans Candida spp among candidemia isolates from
inpatients in various parts of the world: A systematic review. Int J Infect Dis
[Internet]. 2010;14(11):e954–66. Available from:
http://dx.doi.org/10.1016/j.ijid.2010.04.006 | spa |
dc.relation.references | Arias A, Valderrama M, Parra D, Marín J, Mazo L, Montoya C.
Caracterización clínica y epidemiológica de los pacientes con infección del
tracto urinario asociadas al cuidado de la salud. Investig Educ en Enferm
[Internet]. 2012;30(1):28–34. Available from: http://0-www.indexf.com.llull.uib.es/new/cuiden/extendida.php?cdid=675775_1 | spa |
dc.relation.references | Pemán J, Cantón E, Gobernado M. Epidemiology and antifungal susceptibility
of Candida species isolated from blood: Results of a 2-year multicentre study
in Spain. Eur J Clin Microbiol Infect Dis. 2005;24(1):23–30. | spa |
dc.relation.references | Bustamante CI. Treatment of Candida infection: a view from the trenches!
Curr Opin Infect Dis [Internet]. 2005;18(6):490–5. Available from:
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=
00001432-200512000-00004 | spa |
dc.relation.references | THOMPSON M. L. Antifúngicos. Rev Chil infectología [Internet]. 2002 [cited
2017 Apr 21];19:S22–5. Available from:
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-
10182002019100003&lng=en&nrm=iso&tlng=e | spa |
dc.relation.references | Med LINEJ, Berg D, Bechel K, Plempel M, Regel E. Antimycotic sterol
biosynthesis inhibitors. 1986;33(1984). | spa |
dc.relation.references | Chen SCA, Sorrell TC. Antifungal agents. Med J Aust [Internet].
2007;187(7):404–9. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/17908006 | spa |
dc.relation.references | Gregorí Valdés BS. Estructura y actividad de los antifúngicos. Rev Cuba
Farm [Internet]. 2005;39(2). Available from:
http://scielo.sld.cu/pdf/far/v39n2/far12205.pdf | spa |
dc.relation.references | López-Ávila K, Dzul-Rosado KR, Lugo-Caballero C, Arias-León JJ, ZavalaCastro JE. Mecanismos de resistencia antifúngica de los azoles en Candida
albicans. Una revisión. Mech Antifung Resist azoles Candida albicans A Rev
[Internet]. 2016;27(3):127–36. Available from:
http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=118581964
&lang=es&site=ehost-live | spa |
dc.relation.references | Wiederhold NP, Patterson TF, Srinivasan A, Chaturvedi AK, Fothergill AW,
Wormley FL, et al. Repurposing auranofin as an antifungal: In vitro activity
against a variety of medically important fungi. Virulence [Internet]. 2016;In
press(2):138–42. Available from:
http://www.tandfonline.com/doi/full/10.1080/21505594.2016.1196301 | spa |
dc.relation.references | Ostrosky-Zeichner L, Oude Lashof AML, Kullberg BJ, Rex JH. Voriconazole
Salvage Treatment of Invasive Candidiasis. Eur J Clin Microbiol Infect Dis.
2003;22(11):651–5. | spa |
dc.relation.references | Diomedi P. A. Nuevos antifúngicos: Las equinocandinas. Rev Chil
infectología. 2004;21(2):89–101. | spa |
dc.relation.references | Deck DH, Guglielmo BJ. Pharmacological advances in the treatment of
invasive candidiasis. ExpertRevAntiInfectTher. 2006;4(1744–8336
(Electronic)):137–49 | spa |
dc.relation.references | Pfaller MA, Messer SA, Boyken L, Hollis RJ, Rice C, Tendolkar S, et al. In
vitro activities of voriconazole, posaconazole, and fluconazole against 4,169
clinical isolates of Candida spp. and Cryptococcus neoformans collected
during 2001 and 2002 in the ARTEMIS global antifungal surveillance
program. Diagn Microbiol Infect Dis. 2004;48(3):201–5. | spa |
dc.relation.references | Slavin MA, Szer J, Grigg AP, Roberts AW, Seymour JF, Sasadeusz J, et al.
Guidelines for the use of antifungal agents in the treatment of invasive
Candida and mould infections (vol 34, pg 192, 2004). Intern Med J.
2004;34(5):301. | spa |
dc.relation.references | Gavaldà J, Ruiz I. Recomendaciones para el tratamiento de la infección
fúngica invasiva. Infeccion fúngica invasiva por Candida spp. Enferm Infecc
Microbiol Clin [Internet]. 2003;21(9):498–508. Available from:
http://dx.doi.org/10.1016/S0213-005X(03)72995-4 | spa |
dc.relation.references | Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini
MJS. Candida species: Current epidemiology, pathogenicity, biofilm
formation, natural antifungal products and new therapeutic options. J Med
Microbiol. 2013;62(PART1):10–24 | spa |
dc.relation.references | Zomorodian K, Rahimi M, Pakshir K, Motamedi M, Ghiasi M, Rezashah H.
Determination of antifungal susceptibility patterns among the clinical isolates
of Candida species. J Glob Infect Dis. 2011;3(4):357. | spa |
dc.relation.references | Beyda ND, Lewis RE, Garey KW. Resistencia a equinocandinas en especies
de candida: Mecanismos de susceptibilidad reducida y alternativas
terap??uticas. Ann Pharmacother. 2012;46(7–8):1086–96. | spa |
dc.relation.references | Cuenca-Estrella M. Antifúngicos en el tratamiento de las infecciones
sistémicas: Importancia del mecanismo de acción, espectro de actividad y
resistencias. Rev Esp Quimioter. 2010;23(4):169–76. | spa |
dc.relation.references | Caldas CDEM, Pérez-cárdenas JE, Henao CC. Hongos Aislados De
Pacientes Con Micosis Ungueal En La Antimycotic Sensitivity of Different
Isolated Fungi Species in Patients With the Onychomycosis in ManizalesCaldas-Colombia. 2013;(2):26–39. | spa |
dc.relation.references | Pfaller MA, Messer SA, Woosley LN, Jones RN, Castanheira M.
Echinocandin and triazole antifungal susceptibility profiles for clinical
opportunistic yeast and mold isolates collected from 2010 to 2011: Application
of new CLSI clinical breakpoints and epidemiological cutoff values for
characterization of geographic . J Clin Microbiol. 2013;51(8):2571–81. | spa |
dc.relation.references | Guerrero Miranda JE. ESCUELA DE BIOANÁLISIS Disertación Previa a la
obtención del Título de Bioquímica Clínica Título Identificación ,
susceptibilidad y distribución de especies de Cándida obtenidas de muestras
clínicas del Instituto Nacional de Investigación en Salud Pública. 2016;
Available from: http://repositorio.puce.edu.ec/handle/22000/12484 | spa |
dc.relation.references | Castañon Olivaes L. CANDIDIASIS [Internet]. Recursos en Micología -
UNAM. 2016. Available from:
http://www.facmed.unam.mx/deptos/microbiologia/micologia/candidosis.html | spa |
dc.relation.references | Simarro E, Requena L, Canteras M. Fungemias nosocomiales en un hospital
general: epidemiología y factores pronóstico. Estudio prospectivo 1993-1998.
Epidemiology. 2001;304–7. | spa |
dc.relation.references | Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, et
al. Bioorganic & Medicinal Chemistry The biology and chemistry of antifungal
agents : A review. Bioorg Med Chem [Internet]. 2012;20(19):5678–98.
Available from: http://dx.doi.org/10.1016/j.bmc.2012.04.045 | spa |
dc.relation.references | Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther Clin
Risk Manag . 2014;10:95–105. | spa |
dc.relation.references | Staniszewska M, Bondaryk M, Siennicka K, Kurzatkowski W. Ultrastructure of
Candida albicans Pleomorphic Forms: Phase-Contrast Microscopy, Scanning
and Transmission Electron Microscopy. Pjm.microbiology.pl. 2012;61(2):129–
35 | spa |
dc.relation.references | Herwald SE, Kumamoto CA. Candida albicans niche specialization: Features
that distinguish biofilm cells from commensal cells. Curr Fungal Infect Rep.
2014;8(2):179–84. | spa |
dc.relation.references | Guarro J. Taxonomía y biología de los hongos causantes de infección en
humanos. Enferm Infecc Microbiol Clin. 2012;30(1):33–9. | spa |
dc.relation.references | Cantón E, Viudes Á, Experimental UDB, Investigación C De, Candida DELG,
España E, et al. Forum micológico Infección sistémica nosocomial por
levaduras. Rev Iberoam. 2001;51–5. | spa |
dc.relation.references | Han TL, Cannon RD, Villas-Bôas SG. The metabolic response of Candida
albicans to farnesol under hyphae-inducing conditions. FEMS Yeast Res.
2012;12(8):879–89. | spa |
dc.relation.references | Brown AJP, Brown GD, Netea MG, Gow NAR. Metabolism impacts upon
candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol
[Internet]. 2014;22(11):614–22. Available from:
http://dx.doi.org/10.1016/j.tim.2014.07.001 | spa |
dc.relation.references | Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms.
Virulence [Internet]. 2013;4(2):119–28. Available from:
http://www.tandfonline.com/doi/abs/10.4161/viru.22913 | spa |
dc.relation.references | Moyes DL, Richardson JP, Naglik JR. Candida albicans- epithelial
interactions and pathogenicity mechanisms: scratching the surface. Virulence
[Internet]. 2015;6(4):338–46. Available from:
http://www.tandfonline.com/doi/full/10.1080/21505594.2015.1012981 | spa |
dc.relation.references | De la Calle Rodriguez N, Santa Velez C CCN. Factores de virulencia para la
infeccion de tejidos queratinizados por Candida albicans y hongos
dermatofitos. Rev CES Med [Internet]. 2012 [cited 2017 Sep 12];26(1):43–55.
Available from:
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-
87052012000100005&lng=en&nrm=iso&tlng=es | spa |
dc.relation.references | Shareck J, Nantel A, Belhumeur P. Conjugated linoleic acid inhibits hyphal
growth in Candida albicans by modulating Ras1p cellular levels and
downregulating TEC1 expression. Eukaryot Cell. 2011;10(4):565–77. | spa |
dc.relation.references | Paniagua Contreras LG, Monroy Pérez E, Pineda Olvera J, Negrete Abascal
E, Vaca Pacheco S. Caracterización genotípica de cepas de Candida
albicans aisladas de la mucosa oral y vaginal de pacientes no
inmunocomprometidos. Rev Med Hosp Gen Mex [Internet]. 2010;73(2):94–
101. Available from: http://www.medigraphic.com/pdfs/h-gral/hg2010/hg102d.pdf | spa |
dc.relation.references | Rossoni RD, Barbosa JO, Vilela SFG, Dos Santos JD, Jorge AOC, Junqueira
JC. Correlation of phospholipase and proteinase production of Candida with
in vivo pathogenicity in Galleria mellonella. Brazilian J Oral Sci.
2013;12(3):199–2 | spa |
dc.relation.references | Das I, Nightingale P, Patel M, Jumaa P. Epidemiology, clinical characteristics,
and outcome of candidemia: Experience in a tertiary referral center in the UK.
Int J Infect Dis [Internet]. 2011;15(11):e759–63. Available from:
http://dx.doi.org/10.1016/j.ijid.2011.06.006 | spa |
dc.relation.references | Shorr AF, Tabak YP, Johannes RS, Sun X, Spalding J, Kollef MH.
Candidemia on presentation to the hospital: development and validation of a
risk score. Crit Care [Internet]. 2009;13(5):R156. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/19788756%5Cnhttp://www.pubmedcentr
al.nih.gov/articlerender.fcgi?artid=PMC2784380 | spa |
dc.relation.references | Kindo A, Giri S. A review of Candida species causing blood stream infection.
Indian J Med Microbiol. 2012;30(3):270. | spa |
dc.relation.references | Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-
Zeichner L, et al. Clinical Practice Guideline for the Management of
Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin
Infect Dis. 2015;62(4):e1–50 | spa |
dc.relation.references | Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia:
Pathogenicity and antifungal resistance. J Hosp Infect. 2002;50(4):243–60 | spa |
dc.relation.references | N. B, S. B, D. V. Deep-seated Candida infections in the intensive care unit.
Netherlands J Crit Care [Internet]. 2011;15(4):184–90. Available from:
http://www.embase.com/search/results?subaction=viewrecord&from=export&i
d=L362861616%5Cnhttp://www.nvic.nl/download.php?id=765 | spa |
dc.relation.references | Leal AL, Álvarez CA. Boletín [Internet]. Resultados de la vigilancia de la
resistencia bacteriana año 2016 Componente pediátrico y adulto. Bogotá;
2017. p. 24. Available from: http://www.grebo.org/ | spa |
dc.relation.references | Pfaller MA, Jones RN, Doern G V, Sader HS, Hollis RJ. International
Surveillance of Bloodstream Infections Due to Candida Species : Frequency
of Occurrence and Antifungal Susceptibilities of Isolates Collected in 1997 in
the United States , Canada , and South America for the SENTRY Program. J
Clin Microbiol. 1998;36(7):1886–9. | spa |
dc.relation.references | Galván B, Mariscal F. Epidemiología de la candidemia en UCI. Rev Iberoam
Micol [Internet]. 2006;23(1):12–5. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S1130140606700055 | spa |
dc.relation.references | Quindós G. Epidemiology of candidaemia and invasive candidiasis. A
changing face. Rev Iberoam Micol [Internet]. 2014;31(1):42–8. Available from:
http://dx.doi.org/10.1016/j.riam.2013.10.001 | spa |
dc.relation.references | Xie F, Ni T, Zhao J, Pang L, Li R, Cai Z, et al. Design, Synthesis, and in vitro
Evaluation of Novel Antifungal Triazoles. Bioorg Med Chem Lett [Internet].
2017; Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0960894X17303098 | spa |
dc.relation.references | Steinbach WJ. Antifungal agents in children. Pediatr Clin North Am.
2005;52(3):895–915. | spa |
dc.relation.references | Stockmann C, Constance JE, Roberts JK, Olson J, Doby EH, Ampofo K, et al.
Pharmacokinetics and pharmacodynamics of antifungals in children and their
clinical implications. Clin Pharmacokinet. 2014;53(5):429–54. | spa |
dc.relation.references | Gallis H a, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical
experience. Rev Infect Dis. 1990;12(2):308–29 | spa |
dc.relation.references | Chandrasekar P. Management of invasive fungal infections: A role for
polyenes. J Antimicrob Chemother. 2011;66(3):457–65. | spa |
dc.relation.references | Jones E, Goldman M. Lipid formulations of amphotericin B. Cleve Clin J Med.
1998;65(8):423–7. | spa |
dc.relation.references | Warner WA, Sanchez R, Dawoodian A, Li E, Momand J. The C2′–OH of
Amphotericin B Plays an Important Role in Binding the Primary Sterol of
Human But Not Yeast Cells. Natl Institutes Heal. 2013;80(4):631–7. | spa |
dc.relation.references | Odds FC, Brown AJP, Gow NAR. Antifungal agents: Mechanisms of action.
Trends Microbiol. 2003;11(6):272–9. | spa |
dc.relation.references | Díaz A, Garcés C. Uso actual de los antifúngicos triazoles en niños. Infectio
[Internet]. 2012;16(Supl 3):82–93. Available from:
http://dx.doi.org/10.1016/S0123-9392(12)70031-0 | spa |
dc.relation.references | MacCallum DM, Coste A, Ischer F, Jacobsen MD, Odds FC, Sanglard D.
Genetic dissection of azole resistance mechanisms in Candida albicans and
their validation in a mouse model of disseminated infection. Antimicrob
Agents Chemother. 2010;54(4):1476–83. | spa |
dc.relation.references | Rivas, Ana Maria. Cardona N. Antimicóticos de uso sistémico: ¿Con que
opciones terapéuticas contamos? Rev CES Med [Internet]. 2013;23(1):61–76.
Available from: http://www.redalyc.org/html/2611/261121006007/ | spa |
dc.relation.references | Mohr J, Pharm D, Johnson M, Pharm D, Cooper T, Pharm D, et al. Current
Options in Antifungal Pharmacotherapy. Pharmacother Publ Inc.
2008;28(5):614–45. | spa |
dc.relation.references | Cantón E, Pemán J, Valentín A, Espinel-Ingroff A, Gobernado M. In vitro
activities of echinocandins against Candida krusei determined by three
methods: MIC and minimal fungicidal concentration measurements and timekill studies. Antimicrob Agents Chemother. 2009;53(7):3108–11. | spa |
dc.relation.references | Simitsopoulou M, Peshkova P, Tasina E, Katragkou A, Kyrpitzi D, Velegraki
A, et al. Species-Specific and Drug-Specific Differences in Susceptibility of
Candida Biofilms to Echinocandins : Characterization of Less Common.
Antimicrob Agents Chemother. 2013;57(6):2562–70. | spa |
dc.relation.references | Pfaller MA. Antifungal drug resistance: Mechanisms, epidemiology, and
consequences for treatment. Am J Med [Internet]. 2012;125(1 SUPPL.):S3–
13. Available from: http://dx.doi.org/10.1016/j.amjmed.2011.11.001 | spa |
dc.relation.references | Muñoz AC, Tur C, Estivill D. Resistencia in vitro al fluconazol e itraconazol en
aislamientos clínicos de Candida spp y Cryptococcus neo- formans. Rev
Iberoam Micol 1997. 1997;14:50–4. | spa |
dc.relation.references | Blum G, Perkhofer S, Haas H, Schrettl M, Würzner R, Dierich MP, et al.
Potential basis for amphotericin B resistance in Aspergillus terreus.
Antimicrob Agents Chemother. 2008;52(4):1553–5. | spa |
dc.relation.references | CLARK WA, GEARY DH. The Story of the American Type Culture CollectionIts History and Development (1 899-1 973). Adv Appl Microbiol. 1974;17:295–
309. | spa |
dc.relation.references | Supplement FI. M27-S4 Reference Method for Broth Dilution. 2012. | spa |
dc.relation.references | Wagner T, Borg-V. Zepelin M, Rüchel R. Ph-dependent denaturation of
extracellular aspartic proteinases from candida species. Med Mycol.
1995;33(4):275–8. | spa |
dc.relation.references | Oh KB, Miyazawa H, Naito T, Matsuoka H. Purification and characterization of
an autoregulatory substance capable of regulating the morphological
transition in Candida albicans. Proc Natl Acad Sci U S A. 2001;98(8):4664–8. | spa |
dc.relation.references | Lingappa BT, Prasad M, Lingappa Y, Hunt DF, Biemann K. Phenethyl Alcohol
and Tryptophol: Autoantibiotics Produced by the Fungus Candida albicans.
Science (80- ) [Internet]. 1969;163(3863):192–4. Available from:
http://www.sciencemag.org/cgi/doi/10.1126/science.163.3863.192 | spa |
dc.relation.references | Isobe K, Tani Y, Yamada H. Differential Determination Procedure for
Putrescine, Spermidine and Spermine with Polyamine Oxidase from Fungi
and Putrescine Oxidase. Agric Biol Chem [Internet]. 1981;45(3):727–33.
Available from:
http://www.tandfonline.com/doi/full/10.1080/00021369.1981.10864563 | spa |
dc.relation.references | Burshell A, Stathis PA, Do Y, Miller SC, Feldman D. Characterization of an
estrogen-binding protein in the yeast Saccharomyces cerevisiae. J Biol Chem
[Internet]. 1984;259(6):3450–6. Available from:
http://www.jbc.org/content/259/6/3450.shor | spa |
dc.relation.references | Shen LL, Baranowski J, Fostel J, Montgomery DA, Lartey PA. targets for the
discovery of antifungal drugs . DNA Topoisomerases from Pathogenic Fungi :
Targets for the Discovery of Antifungal Drugs. 1992;36(12):2778–84 | spa |
dc.relation.references | Knudtson WU, Wohlgemuth K, Kirkbride C, Robl M, Kieffer M. Necropsy
Findings Histological Findings. 1973;(1152):175–8. | spa |
dc.relation.references | Briand D, Dubreucq E, Galzy P. Functioning and Regioselectivity of the
Lipase of Candida Parapsilosis (Ashford) Langeron and Talice in Aqueous
Medium: New Interpretation of Regioselectivity Taking Acyl Migration into
Account. Eur J Biochem. 1995;228(1):169–75. | spa |
dc.relation.references | Aktas E, Yigit N, Ayyildiz a. Esterase activity in various Candida species. J Int
Med Res [Internet]. 1978;30(3):322–4. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/16854187 | spa |
dc.relation.references | Middelhoven WJ, Coenen A, Kraakman B, Sollewijn Gelpke MD. Degradation
of some phenols and hydroxybenzoates by the imperfect ascomycetous yeast
Candida parapsilosis and Arxula adeninivorans: Evidence for an operative
gentisate pathway. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol.
1992;62(3):181–7 | spa |
dc.relation.references | Cantón E, Msrtin E, Espinel-ingroff A. Métodos estandarizados por el CLSI
para el estudio de la sensibilidad a los antifúngicos (documentos M27-A3,
M38-A y M44-A). Rev Iberoam Micol [Internet]. 2007;15:1. Available from:
http://www.guia.reviberoammicol.com/Capitulo15.pdf | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | Infecciones | |
dc.subject.lemb | Investigación | |
dc.subject.lemb | Compuestos triazólicos | |
dc.subject.proposal | Antifúngico | spa |
dc.subject.proposal | Concentración mínima inhibitoria | spa |
dc.subject.proposal | CLSI | spa |
dc.subject.proposal | Triazol | spa |
dc.subject.proposal | ATCC | spa |
dc.subject.proposal | Candida spp. | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |