Mostrar el registro sencillo del ítem
Efecto de la salinidad sobre genes asociados a ciclos biogeoquímicos del manglar de la desembocadura del Río Ranchería, La Guajira.
dc.contributor.advisor | Vanegas Guerrero, Javier | |
dc.contributor.advisor | Posada Buitrago, Martha Lucía | |
dc.contributor.author | Sandoval Figueredo, Angie Vanessa | |
dc.contributor.author | Rodelo Bernal, María Camila | |
dc.date.accessioned | 2021-11-11T14:49:14Z | |
dc.date.available | 2021-11-11T14:49:14Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/3643 | |
dc.description.abstract | Los suelos de manglar albergan una gran variedad de microorganismos claves en el ciclaje de nutrientes que actúan bajo variaciones estacionales y diarias de salinidad. Sin embargo, se desconoce cómo la salinidad influye sobre la actividad funcional de los microorganismos del manglar. El objetivo de este trabajo fue determinar el efecto de la salinidad sobre genes asociados a ciclos biogeoquímicos Nitrógeno, Azufre y Metano en un manglar alterado de la Guajira por medio de un análisis metagenómico. Para esto se muestrearon tres puntos contrastantes en salinidad (H: 61,52 ‰, M: 14,61 ‰, L: 2,80 ‰), se extrajo el ADN total, se secuenció por Illumina HiSeq, se anotó con MEGAN 5 y se asignaron las secuencias con la base de datos KEGG. El análisis estadístico se realizó con la página web Microbiome Analyst y STAMP. Se encontró que los genes asociados al ciclo del Metano tuvieron las mayores abundancias, seguido de los genes del ciclo del N y S. El ciclo del Metano fue favorecido por la salinidad. Se detectaron más marcadores en salinidad alta entre los tres ciclos. Sin embargo, la salinidad baja favoreció la abundancia de glutamina sisntetasa (glnA) del ciclo del N, la salinidad media de sulfato adeniltransferasa (sat) del ciclo del S y la salinidad alta de la piruvato, agua dikinasa (pps) del ciclo del Metano. Los resultados revelan la influencia de salinidad sobre los ciclos biogeoquímicos y contribuyen a entender la dinámica funcional de los microorganismos del manglar. | spa |
dc.description.abstract | Mangrove soils harbor a great variety of microorganisms that are key in the cycling of nutrients that act under seasonal and daily salinity variations. However, it is unknown how salinity influences the functional activity of mangrove microorganisms. The objective of this work was determine the effect of salinity on genes associated to Nitrogen, Sulfur and Methane biogeochemical cycles in an altered mangrove swamp of Guajira by metagenomics. For this, three contrasting salinity points were sampled (H: 61.52 ‰, M: 14.61 ‰, L: 2.80 ‰), the total DNA was extracted, sequenced by illumina HiSeq, metagenome annotation with MEGAN 5 and the sequences were assigned with the KEGG database. The statistical analysis was carried out with the Microbiome Analyst website and STAMP. It was found that genes associated with methane cycle had the highest abundances, followed by the N and S cycle genes. The methane cycle was favored by salinity. In high salinity, more biomarkers were found among the three cycles. However, these indicated that the low salinity favors the abundance of glutamine synthetase (glnA) of the N cycle; in medium salinity the sulfate adenyltranferase (sat) of the S cycle and in high salinity, the pyruvate water dikinase (pps) of Methane cycle. The results reveal the influence of salinity on biogeochemical cycles and contribute to understand the functional dynamics of mangrove microorganisms. | eng |
dc.description.tableofcontents | Abreviaturas 11 Resumen 1 1. 16 2. 18 2.1 Objetivo general 5 2.2 Objetivos específicos 5 3. 19 3.1 Manglares en Colombia 6 3.2 Metagenómica en Colombia 6 3.3 Secuenciación masiva en Manglares 6 3.5 Efecto de la salinidad sobre microorganismos de manglar 9 4. 23 4.1 23 4.1.1 23 4.2 24 4.2.1 Papel de los microorganismos en los ciclos biogeoquímicos 11 4.2.2 Ciclo del Nitrógeno 11 4.2.3 Ciclo del Azufre 13 4.2.4 Ciclo del Carbono 14 4.3 Metagenómica 15 4.3.1 Definición y características 15 4.3.2 Herramientas bioinformáticas de análisis metagenómico 16 4.3.2.1 Megan 5.0 16 4.3.2.2 KEGG 16 4.3.2.3 Microbiome analyst 17 4.3.2.3.1 Lefse 17 4.3.2.3.2 Biomarcador 17 4.3.2.3.3 Metagenomeseq 17 4.3.2.4 STAMP 18 4.3.2.4.1 Análisis de componentes principales PCA 18 4.3.2.4.2 Mapa de calor 18 5. 32 5.1 Universo, población, muestra 19 5.2 Hipótesis, variables e indicadores 19 5.3 Técnicas y procedimientos 20 3. 36 6.1 Ciclo del Metano 24 6.2 Ciclo del Nitrógeno 27 6.3 Ciclo del Azufre 29 6.4 Biomarcadores 31 4. 48 5. 52 Referencias Bibliográficas 40 Anexos 57 | spa |
dc.format.extent | 83p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2019 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Efecto de la salinidad sobre genes asociados a ciclos biogeoquímicos del manglar de la desembocadura del Río Ranchería, La Guajira. | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.identifier.barcode | 60032 | |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá DC | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol. Biogeogr [Internet]. 2011 [Accessed 2019 April 01]; 20:154-159. Available from: https://doi.org/10.1111/j.1466-8238.2010.00584.x | spa |
dc.relation.references | Samper-Villarreal J, Silva-Benavides AM. Complejidad estructural de los manglares de Playa Blanca, Escondido y Rincón de Osa, Golfo Dulce, Costa Rica. Revista de Biología Tropical [Internet]. 2015 [Consultado 2018 Abril 23]; 63(1):199-208. Disponible en: http://www.redalyc.org/articulo.oa?id=44943930012 | spa |
dc.relation.references | User S. Manglares | Ministerio de Ambiente y Desarrollo Sostenible [Internet]. Minambiente.gov.co. 2018 [Consultado 2018 Abril 11]. Disponible en: http://www.minambiente.gov.co/index.php/component/content/article?id=412:plantilla- bosques-biodiversidad-y-servicios-ecosistematicos-14 | spa |
dc.relation.references | Fao. La desaparición de manglares alcanza un nivel alarmante [Internet]. Fao.org. 2018 [Consultado 2018 Abril 11]. Disponible en: http://www.fao.org/newsroom/es/news/2008/1000776/index.html | spa |
dc.relation.references | López-Angarita J, Roberts CM, Tilley A, Hawkins JP, Cookec RG. Mangroves and people: Lessons from a history of use and abuse in four Latin American countries. Forest Ecology and Management [Internet]. 2016 [Accessed 2018 November 15]; 368: 151-162. Available from: https://doi.org/10.1016/j.foreco.2016.03.020 | spa |
dc.relation.references | Olguín E, Hernández M, Sánchez-Galván G. Contaminación de manglares por hidrocarburos y estrategias de biorremediación, fitorremediación y restauración. Rev. Int. Contam. Ambient [Internet]. 2007 [Consultado 2018 Abril 23]; 23(3): 139-154. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188- 49992007000300004&lng=es. | spa |
dc.relation.references | Lovelock CE, Krauss KW, Osland MJ, Reef R, Ball MC. The physiology of mangrove trees with changing climate. Tropical Tree Physiology [Internet]. 2016 [Accessed 2018 November 15]; 149-179. Available from: https://doi.org/10.1007/978-3-319-27422-5_7 | spa |
dc.relation.references | Popp M, Polania J, Weiper M. Physiological adaptations to different salinity levels in mangrove. In Towards the rational use of high salinity tolerant plants [Internet]. 1993 [Accessed 2018 November 15]; 27: 217-224. Available from: https://doi.org/10.1007/978-94-011-1858-3_22 | spa |
dc.relation.references | Garcia JDS, Dalmolin C, França MGC, Mangabeira PAO. Different salt concentrations induce alterations both in photosynthetic parameters and salt gland activity in leaves of the mangrove Avicennia schaueriana. Ecotoxicol environ saf [Internet]. 2017 [Accessed 2018 November 15]; 141: 70-74. Available from: https://doi.org/10.1016/j.ecoenv.2017.03.016 | spa |
dc.relation.references | Rossiana N, Miranti M, Kosmita K. Antibacterial Activity Test of Endophytic Fungus from Mangrove Plant (Rhizophora apiculata L.) and (Bruguiera gymnorrizha (L.) Lamk). Against Klebsiella pneumoniae ATCC 700603. KnE Life Sciences [Internet]. 2017 [Accessed 2018 November 15]; 2(6): 146-157. Available from: https://doi.org/10.18502/kls.v2i6.1031 | spa |
dc.relation.references | Wu J, Qiu C, Ren Y, Yan R, Ye X, Wang G. Novel Salt-Tolerant Xylanase from a Mangrove-Isolated Fungus Phoma sp. MF13 and Its Application in Chinese Steamed Bread. ACS Omega [Internet]. 2018 [Accessed 2018 November 15]; 3(4): 3708-3716. Available from: https://doi.org/10.1021/acsomega.8b00345 | spa |
dc.relation.references | Zhang M, Luo Y, Lin LA, et al. Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China. Appl microbiol biotechnol [Internet]. 2018 [Accessed 2018 November 15]; 102(5): 2441-2454. Available from: https://doi.org/10.1007/s00253-017- 8718-2 | spa |
dc.relation.references | Mapelli F, Marasco R, Rolli E, et al. Potential for plant growth promotion of rhizobacteria associated with salicornia growing in tunisian hypersaline soils. BioMed Research international [Internet]. 2013 [Accessed 2018 November 15]; 1-13. Available from: https://doi.org/10.1155/2013/248078 | spa |
dc.relation.references | Yan N, Marschner P, Cao W, Zuo C, Qin W. Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research [Internet]. 2015 [Accessed 2018 September 14]; 3(4):316-323. Available from: https://doi.org/10.1016/j.iswcr.2015.11.003 | spa |
dc.relation.references | Lovelock CE, Reef R. Isotopic signatures of stem water reveal differences in water sources accessed by mangrove tree species. Hydrobiologia [Internet]. 2017 [Accessed 2018 November 15]; 803(1):133-145. Available from: https://doi.org/10.1007/s10750- 017-3149-8. | spa |
dc.relation.references | Ashis Kr. P, Ratnadip R, Amrit K, Subrata J. Mangrove Degradation in the Sundarbans. Coastal Wetlands: Alteration and Remediation [Internet]. 2017 [Accessed 2018 November 15]; 357-392. Available from: https://doi.org/10.1007/978-3-319-56179-0_11 | spa |
dc.relation.references | Polanía J, Vanegas GJ, Galindo T, Pérez Á, Campos S, Sánchez J, et al. Grupos funcionales de microorganismos asociados al manglar del Caribe colombiano. Red de Estudios del Mundo Marino, Remar Investigación en Ciencias del Mar: Aportes de la Universidad Nacional de Colombia [Internet]. 1st ed. Bogotá: Digiprint editores e.u.; 2013 [Consultado 13 April 2018]. p. 9-36. Disponible en: https://www.researchgate.net/publication/259297930_Investigacion_en_Ciencias_del_M ar_Aportes_de_la_Universidad_Nacional_de_Colombia | spa |
dc.relation.references | Holguin G, Vazquez P, Bashan Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils [Internet]. 2001 [Accessed 2018 November 15]; 33: 265-278. Available from: https://doi.org/10.1007/s003740000319 | spa |
dc.relation.references | Wang H, Gilbert JA, Zhu Y, Yang X. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Sci Total Environ [Internet]. 2018 [Accessed 2018 November 15]; 631: 1342-1349. Available from: https://doi.org/10.1016/j.scitotenv.2018.03.102 | spa |
dc.relation.references | Ferrera-Cerrato R, Alarcón A. Microbiología agrícola. México: Editorial Trillas; 2007. pp.233-245. | spa |
dc.relation.references | Ghurye J, Cepeda Espinoza V, Pop M. Metagenomic Assembly: Overview, Challenges and Applications. Yale Journal of Biology and Medicine [Internet]. 2015 [Accessed 2018 April 21]; 89(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045144/?report=classic | spa |
dc.relation.references | Terrón González L. Desarrollo de sistemas de expresión para análisis metagenómicos funcionales e identificación de enzimas de interés [Doctorado]. Sevilla, Universidad Pablo de Olavide. Dpto. Biología molecular e Ingeniería Bioquímica; 2014. | spa |
dc.relation.references | Xu Z, Hansen M, Hansen L, Jacquiod S, Sørensen S. Bioinformatic Approaches Reveal Metagenomic Characterization of Soil Microbial Community. PLoS ONE [Internet]. 2014 [Accessed l 2018 April 21]; 9(4): e93445. Available from: https://doi.org/10.1371/journal.pone.0093445 | spa |
dc.relation.references | Bonilla-Rosso G, Souza V, Eguiarte L. Metagenómica, Genómica y Ecología Molecular: La nueva ecología en el bicentenario de Darwin. Revista especializada en ciencias biológicas [Internet]. 2008 [Consultado 2018 September 14]; 11(1):42-51. Disponible en: http://www.medigraphic.com/pdfs/revespciequibio/cqb-2008/cqb081e.pdf | spa |
dc.relation.references | Alzubaidy H, Essack M, Malas T, Bokhari A, Motwalli O, Kamanu F et al. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. Gene [Internet]. 2016 [Accessed 2018 April 26]; 576(2):626-636. Available from: https://doi.org/10.1016/j.gene.2015.10.032 | spa |
dc.relation.references | Basak P, Pramanik A, Roy R, Chattopadhyay D, Bhattacharyya M. Cataloguing the bacterial diversity of the Sundarbans mangrove, India in the light of metagenomics. Genomics Data [Internet]. 2015 [Accessed 2018 April 12]; 4(7):90-92. Available from: https://doi.org/10.1016/j.gdata.2015.03.014 | spa |
dc.relation.references | Basak P, Pramanik A, Sengupta S, Nag S, Bhattacharyya A, Roy D, et al. Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing. Genomics Data [Internet]. 2016 [Accessed 2018 April 12]; 7:76-78. Available from: https://doi.org/10.1016/j.gdata.2015.11.030 | spa |
dc.relation.references | Andreote F, Jiménez D, Chaves D, Dias A, Luvizotto D, Dini-Andreote F, et al. The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics. PLoS ONE [Internet]. 2012 [Accessed 2018 April 12]; 7(6):e38600. Available from: https://doi.org/10.1371/journal.pone.0038600 | spa |
dc.relation.references | Figueroa Galvis IP. Caracterización de la diversidad y predicción del potencial genético funcional de las comunidades microbianas asociadas a la rizosfera del mangle negro (Avicennia germinans) en un gradiente de salinidad de La Guajira. [Maestra en Ciencias- Microbiología]. Bogotá D.C: Universidad Nacional de Colombia; 2017. | spa |
dc.relation.references | Imchen M, Kumavath R, Barh D, Vaz A, Góes-Neto A, Tiwari S, et al. Comparative mangrove metagenome reveals global prevalence of heavy metals and antibiotic resistome across different ecosystems. Scientific Reports [Internet]. 2018 [Accessed 2018 September 14]; 8(1):1-15. Available from: https://doi.org/10.1038/s41598-018- 29521-4 | spa |
dc.relation.references | Ramos Castañeda Y, Galván Ayala D, Pitre Ruiz L. Carbono Biomásico en suelos de manglar en el delta del río Ranchería-brazo el Riíto, la Guajira, Colombia. Revista de la asociación Colombiana de ciencias biológicas [Internet]. 2016 [Consultado 2018 Abril 11]; 1(28). Disponible en: http://www.ojs.asociacioncolombianadecienciasbiologicas.org/index.php/accb/article/vie w/126 | spa |
dc.relation.references | Lema Vélez L, Polanía J. Estructura y dinámica del manglar del delta del río Ranchería, Caribe colombiano. Revista de Biología Digital [Internet]. 2007 [Consultado 2018 Abril 11]; 55(1). Disponible en: http://www.scielo.sa.cr/scielo.php?pid=S0034- 77442007000100003&script=sci_arttext | spa |
dc.relation.references | Garcés Ordoñez O, Castellanos Martínez M. Supervivencia de propágulos de Rhizophora Mangle bajo tensores ambientales en el brazo Calanca del Río Ranchería, Caribe Colombiano. Boletín de Investigaciones Marinas y Costeras - INVEMAR [Internet]. 2016 [Consultado 2018 Abril 11]; 45(2). Disponible en: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122- 97612016000200345&lng=en&nrm=iso&tlng=es | spa |
dc.relation.references | Orjuela Rojas A, Villamil C, Sanjuan Muñoz A. Cobertura y estructura de los bosques de mangle en la Baja Guajira, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras - INVEMAR [Internet]. 2011 [Consultado 2018 Abril 11]; 40(2). Disponible en: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122- 97612011000200009 | spa |
dc.relation.references | Villamil C, Del Portillo P, Monguí A. Clonación, expresión y caracterización de una nueva esterasa derivada de metagenomas de suelos agrícolas colombianos. Revista Colombiana de Biotecnología [Internet]. 2016 [Consultado 2018 Abril 11]; 18(2):48. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0123- 34752016000200007&lng=en&nrm=iso&tlng=es | spa |
dc.relation.references | Palma L, Ardila D, Zambrano M, Restrepo S, González A. In vitro and in silico characterization of metagenomic soil-derived cellulases capable of hydrolyzing oil palm empty fruit bunch. Biotechnology Reports [Internet]. 2017 [Accessed 2018 April 11];15:55-62. Available from: https://doi.org/10.1016/j.btre.2017.06.003 | spa |
dc.relation.references | Florez Vasquez D. Caracterización de clones lipolíticos provenientes de una biblioteca metagenómica de bosque Altoandino Colombiano [Microbióloga agrícola y veterinaria]. Bogotá D.C: Pontificia Universidad Javeriana Facultad de ciencias 2012. | spa |
dc.relation.references | Montaña-Lara JP. Aproximación metagenómica para la identificación de enzimas lipolíticas en suelo de bosque alto andino del parque nacional natural Los Nevados. [Doctor en Ciencias Biológicas]. Bogotá D.C:Pontificia Universidad Javeriana; 2015. | spa |
dc.relation.references | Thompson C, Beys-da-Silva W, Santi L, Berger M, Vainstein M, Guima rães J, et al. A potential source for cellulolytic enzyme discovery and environmental aspects revealed through metagenomics of Brazilian mangroves. AMB Express [Internet]. 2013[Accessed 2018 April 12]; 3(1):65. Available from: https://doi.org/10.1186/2191-0855-3-65 | spa |
dc.relation.references | Simões M, Antunes A, Ottoni C, Amini M, Alam I, Alzubaidy H et al. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea — A Metagenomic Approach. Genomics, Proteomics & Bioinformatics [Internet]. 2015 [Accessed 2018 April 12]; 13(5):310-320. Available from: https://doi.org/10.1016/j.gpb.2015.07.002 | spa |
dc.relation.references | Ullah R, Yasir M, Khan I, Bibi F, Sohrab S, Al-Ansari A et al. Comparative bacterial community analysis in relatively pristine and anthropogenically influenced mangrove ecosystems on the Red Sea. Can J Microbiol. [Internet]. 2017 [Accessed 2018 April 12]; 63(8):649-660. Available from: https://doi.org/10.1139/cjm-2016-0587 | spa |
dc.relation.references | Pessoa T, Rezende R, Marques E, Pirovani C, dos Santos T, dos Santos Gonçalves A, et al. Metagenomic alkaline protease from mangrove sediment. Journal of Basic Microbiology [Internet]. 2017 [Accessed 2018 April 12]; 57(11):962-973. Available from: https://doi.org/10.1002/jobm.201700159 | spa |
dc.relation.references | Mai Z, Su H, Zhang S. Isolation and Characterization of a Glycosyl Hydrolase Family 16 β-Agarase from a Mangrove Soil Metagenomic Library. International Journal of Molecular Sciences [Internet]. 2016 [Accessed 2018 April 12]; 17(8):1360. Available from: https://doi.org/10.3390/ijms17081360 | spa |
dc.relation.references | Lino Soares F, Marcon J, Pereira e Silva M, Khakhum N, Teixeira Cerdeira L, Ronzella Ottoni J et al. A Novel Multifunctional β-N-Acetylhexosaminidase Revealed through Metagenomics of an Oil-Spilled Mangrove. Bioengineering [Internet]. 2017 [Accessed 2018 april 12]; 4(4):62. Available from:https://doi.org/10.3390/bioengineering4030062 | spa |
dc.relation.references | Cabral L, Pereira de Sousa S, Júnior G, Hawley E, Andreote F, Hess M, et al. Microbial functional responses to long-term anthropogenic impact in mangrove soils. Ecotoxicology and Environmental Safety [Internet]. 2018 [Accessed 2018 September 14];160:231-239. Available from: https://doi.org/10.1016/j.ecoenv.2018.04.050 | spa |
dc.relation.references | Lin X, Hetharua B, Lin L, Xu H, Zheng T, He Z, Tian Y. Mangrove sediment microbiome: Adaptive microbial assemblages and their routed biogeochemical processes in yunxiao mangrove national nature reserve, china. Microb Ecol [Internet]. 2018 [Accessed 2018 September 14]; 1-13. Available from: https://doi.org/10.1007/s00248- 018-1261-6 | spa |
dc.relation.references | Zhang X, Hu B, Ren H, Zhang J. Composition and functional diversity of microbial community across a mangrove-inhabited mudflat as revealed by 16S rDNA gene sequences. Science of The Total Environment [Internet]. 2018 [Accessed 2018 April 14]; 633:518-528. Available from: https://doi.org/10.1016/j.scitotenv.2018.03.158 | spa |
dc.relation.references | Mendes L, Tsai S. Distinct taxonomic and functional composition of soil microbiomes along the gradient forest-restinga-mangrove in southeastern Brazil. Antonie van Leeuwenhoek [Internet]. 2017 [Accessed 2018 April 15]; 111(1):101-114. Available from: https://doi.org/10.1007/s10482-017-0931-6 | spa |
dc.relation.references | Rampadarath S, Bandhoa K, Puchooa D, Jeewon R, Bal S. Metatranscriptomics analysis of mangroves habitats around Mauritius. World Journal of Microbiology and Biotechnology [Internet]. 2018 [Accessed 2018 September 17]; 34(4):1-11. Available from: https://doi.org/10.1007/s11274-018-2442-7 | spa |
dc.relation.references | Sánchez-Arias L, Paolini J, Paul Rodríguez J. Dinámica de las propiedades del suelo en bosques de Rhizophora mangle L. (Rhizophoraceae) en Isla de Margarita, Venezuela. Revista de Biología Tropical [Internet]. 2010 [Consultado 2018 Abril 12]; 58(2):547- 564. Disponible en: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034- 77442010000200002&lng=en | spa |
dc.relation.references | Nogueira V, Rocha L, Colares G, Angelim A, Normando L, Cantão M et al. Microbiomes and potential metabolic pathways of pristine and anthropized Brazilian mangroves. Regional Studies in Marine Science [Internet]. 2015 [Accessed 2018 September 14]; 2:56-64. Available from: https://doi.org/10.1016/j.rsma.2015.08.008 | spa |
dc.relation.references | Kimbrel JA, Ballor N, Wu YW, et al. Microbial community structure and functional potential along a hypersaline gradient. Front. Microbiol [Internet]. 2018 [Accessed 2018 September 14]; 9:1492. Available from: https://doi.org/10.3389/fmicb.2018.01492 | spa |
dc.relation.references | Sánchez O, Herzig M, Peters E, Zambrano L. Perspectivas sobre conservación de ecosistemas acuáticos en México. [Internet]. Estados Unidos: 1st ed, 2007 [Consultado 2018 September 14]. Disponible en: https://www.researchgate.net/publication/288653766_Perspectivas_sobre_conservacion_ de_ecosistemas_acuaticos_en_Mexico | spa |
dc.relation.references | Vanegas J. Bacterias fijadoras de nitrógeno y solubilizadoras de fosfato en la rizosfera del manglar de San Andrés Isla. Cuad Caribe [Internet]. 2004 [Consultado 2018 Septiembre 14];1(5):67-70. Disponible en: https://revistas.unal.edu.co/index.php/ccaribe/article/view/41762/43453. | spa |
dc.relation.references | Kanehisa Laboratories. KEGG PATHWAY: Nitrogen metabolism - Reference pathway [Internet]. Genome.jp. 2018 [Accessed 2018 September 14]. Available from: https://www.genome.jp/kegg- bin/show_pathway?map=map00910&show_description=show | spa |
dc.relation.references | Reyes C, Schneider D, Lipka M, Thürmer A, Böttcher M, Friedrich M. Nitrogen Metabolism Genes from Temperate Marine Sediments. Marine Biotechnology [Internet]. 2017 [Accessed 2018 September 14]; 19(2):175-190. Available from: https://doi.org/10.1007/s10126-017-9741-0 | spa |
dc.relation.references | Albright M, Timalsina B, Martiny J, Dunbar J. Comparative Genomics of Nitrogen Cycling Pathways in Bacteria and Archaea. Microbial Ecology [Internet]. 2018 [Accessed 2018 September 14]. Available from: https://doi.org/10.1007/s00248-018- 1239-4 | spa |
dc.relation.references | Hayatsu M, Tago K, Saito M. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition [Internet]. 2008 [Accessed 2018 September 14]; 54(1):33-45. Available from: https://doi.org/10.1111/j.1747-0765.2007.00195.x | spa |
dc.relation.references | Jetten M. The microbial nitrogen cycle. Environmental Microbiology [Internet]. 2008 [Accessed 2018 September 14]; 10(11):2903-2909. Available from: https://doi.org/10.1111/j.1462-2920.2008.01786.x | spa |
dc.relation.references | Kanehisa Laboratories. KEGG PATHWAY: Sulfur metabolism - Reference pathway [Internet]. Genome.jp. 2018 [Accessed 2018 September 14]. Available from: https://www.genome.jp/kegg- bin/show_pathway?map=map00920&show_description=show | spa |
dc.relation.references | Anantharaman K, Hausmann B, Jungbluth S, Kantor R, Lavy A, Warren L et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. The ISME Journal [Internet]. 2018 [Accessed 2018 September 14]; 12(7):1715-1728. Available from: https://doi.org/10.1038/s41396-018-0078-0 | spa |
dc.relation.references | He Y, Feng X, Fang J, Zhang Y, Xiao X. Metagenome and Metatranscriptome Revealed a Highly Active and Intensive Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin. Frontiers in Microbiology [Internet]. 2015 [Accessed 2018 September 14]; 6:1-11. Available from:https://doi.org/10.3389/fmicb.2015.01236 | spa |
dc.relation.references | Yousuf B, Kumar R, Mishra A, Jha B. Unravelling the Carbon and Sulphur Metabolism in Coastal Soil Ecosystems Using Comparative Cultivation-Independent Genome-Level Characterisation of Microbial Communities. PLoS ONE [Internet]. 2014 [Accessed 2018 September 14]; 9(9):e107025. Available from: https://doi.org/10.1371/journal.pone.0107025 | spa |
dc.relation.references | Mahowald, N. (2018). Atmospheric Biogeochemistry. In: R. Leemans, ed., Ecological Systems, 1st ed. New York, pp.7-12. | spa |
dc.relation.references | Hügler M, Sievert S. Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean. Annual Review of Marine Science [Internet]. 2011 [Accessed 2018 September 14]; 3(1):261-289. Available from: https://doi.org/10.1146/annurev-marine-120709- 142712 | spa |
dc.relation.references | Kanehisa Laboratories. KEGG PATHWAY: Methane metabolism - Reference pathway [Internet]. Genome.jp. 2018 [Accessed 2018 September 14]. Available from: https://www.genome.jp/keggin/show_pathway?map=map00680&show_description=sho w | spa |
dc.relation.references | Shen L, Liu S, Zhu Q, Li X, Cai C, Cheng D et al. Distribution and Diversity of Nitrite- Dependent Anaerobic Methane-Oxidising Bacteria in the Sediments of the Qiantang River. Microbial Ecology [Internet]. 2013 [Accessed 2018 September 14]; 67(2):341- 349. Available from: https://doi.org/10.1007/s00248-013-0330-0 | spa |
dc.relation.references | Su X, Zhao W, Xia D. The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam. Biotechnology for Biofuels [Internet]. 2018 [Accessed 2018 September 14]; 11(1):2-18. Available from: https://doi.org/10.1186/s13068-018-1237-2 | spa |
dc.relation.references | Hallam S. Reverse Methanogenesis: Testing the Hypothesis with Environmental Genomics. Science [Internet]. 2004 [Accessed 2018 September 14]; 305(5689):1457- 1462. Available from: https://doi.org//10.1126/science.1100025 | spa |
dc.relation.references | Xu K, Tang Y, Ren C, Zhao K, Wang W, Sun Y. Activity, distribution, and abundance of methane-oxidizing bacteria in the near surface soils of onshore oil and gas fields. Applied Microbiology and Biotechnology [Internet]. 2012 [Accessed 2018 September 14]; 97(17):7909-7918. Available from: https://doi.org/10.1007/s00253-012-4500-7 | spa |
dc.relation.references | Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. A Bioinformatician's Guide to Metagenomics. Microbiology and Molecular Biology Reviews [Internet]. 2008 [Accessed 2018 September 14]; 72(4):557-578. Available from: http://doi.org/10.1128/MMBR.00009-08 | spa |
dc.relation.references | Huson D. MEGAN — Algorithms in Bioinformatics [Internet]. Ab.inf.uni-tuebingen.de. 2016 [Accessed 2018 September 14]. Available from: http://ab.inf.uni- tuebingen.de/software/megan/ | spa |
dc.relation.references | Huson D. User Manual for MEGAN V6.10.13. 2018. | spa |
dc.relation.references | Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res [Internet]. 2018 [Accessed 2018 September 14]; 28(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102409/ | spa |
dc.relation.references | Kanehisa Laboratories. KEGG: Kyoto Encyclopedia of Genes and Genomes [Internet]. Genome.jp. 2018 [Accessed 2018 September 14]. Available from: https://www.genome.jp/kegg/ | spa |
dc.relation.references | Dhariwal A, Chong J, Habib S, King I, Agellon L, Xia J. MicrobiomeAnalyst: a web- based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research [Internet]. 2017 [Accessed 2018 September 14]; 45(W1):W180- W188. Available from: https://doi.org/10.1093/nar/gkx295 | spa |
dc.relation.references | Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W et al. Metagenomic biomarker discovery and explanation. Genome Biology [Internet]. 2011 [Accessed 2018 September 14]; 12(6):R60. Available from: https://doi.org/10.1186/gb-2011-12-6-r60 | spa |
dc.relation.references | Strimbu K, Tavel J. What are biomarkers? Current Opinion in HIV and AIDS [Internet]. 2010 [Accessed 2018 September 14]; 5(6):463-466. Available from: https://doi.org/10.1097/COH.0b013e32833ed177 | spa |
dc.relation.references | Parks D, Tyson G, Hugenholtz P, Beiko R. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics [Internet]. 2014 [Accessed 2018 September 14]; 30(21):3123-3124. Available from: https://doi.org/10.1093/bioinformatics/btu494 | spa |
dc.relation.references | Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP - Bioinformatics Software [Internet]. Kiwi.cs.dal.ca. 2018 [Accessed 2018 September 14]. Available from: http://kiwi.cs.dal.ca/Software/STAMP | spa |
dc.relation.references | Abdi H, Williams LJ. Principal component analysis. Wiley interdisciplinary reviews: ncomputational statistics [Internet]. 2010 [Accessed 2018 September 14]; 2(4):433-459. Available from: https://doi.org/10.1002/wics.101 | spa |
dc.relation.references | Pleil JD, Stiegel MA, Madden MC, Sobus JR. Heat map visualization of complex environmental and biomarker measurements. Chemosphere [Internet]. 2011 [Accessed 2018 September 14]; 84(5): 716-723. Available from: https://doi.org/10.1016/j.chemosphere.2011.03.017 | spa |
dc.relation.references | Polanía J, Orozco- Toro CA, Angel IF. Delta del río ranchería (La Guajira Colombia): caudal, salinidad y transporte de sólidos y sobre composición y estructura de los manglares. Actual Biol (Colombia) [Internet]. 2006 [Consultado 2018 Noviembre 15]; 28(84): 27-37. Disponible en: https://aprendeenlinea.udea.edu.co/revistas/index.php/actbio/article/download/329400/20 785862 | spa |
dc.relation.references | Muñoz-García A, Mestanza O, Isaza JP, Figueroa-Galvis I, Vanegas J. Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. Environmental pollution [Internet]. 2019 [Accessed 2019 March 29]; 84(5): 716-723. Available from: https://doi.org/10.1016/j.envpol.2019.03.056 | spa |
dc.relation.references | Bolger AM, Lohse M, Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170. | spa |
dc.relation.references | Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Research [Internet]. 2007 [Accessed 2018 November 18;] 17(3): 377-386. Available from: https://doi.org/10.1101/gr.5969107 | spa |
dc.relation.references | Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles [Internet]. 2014 [Accessed 2018 November 18]; 18(5): 791-809. Available from: https://doi.org/10.1007/s00792-014-0670-9 | spa |
dc.relation.references | Lennon JT, Jones E. Microbial seed banks: the ecological and evolutionary implications of dormancy .Nature Reviews Microbiology [Internet]. 2011 [Accessed 2018 November 18]; 9: 119-130. Available from: https://doi.org/10.1038/nrmicro2504 | spa |
dc.relation.references | Jeffries TC, Seymour JR, Gilbert JA, Dinsdale EA, Newton K, Leterme SS, Roudnew B, Smith RJ, Seuront L, Mitchell JG. Substrate type determines metagenomic profiles from diverse chemical habitats. PLoS One [Internet]. 2011 [Accessed 2018 November 18]; 6(9). Available from: https://doi.org/10.1371/journal.pone.0025173 | spa |
dc.relation.references | Hongmei J, Shunyan C, Zhi Z, Chen W, Sanjay N, Hongbin L. Spatial variations of the methanogenic communities in the sediments of tropical mangroves. PLoS One [Internet]. 2016 [Accessed 2018 November 18]; 11(9). Available from: https://doi.org/10.1371/journal.pone.0161065 | spa |
dc.relation.references | INVEMAR. 2017. Diagnóstico y evaluación de la calidad de las aguas marinas y costeras en el Caribe y Pacífico colombianos. Garcés O, L Espinosa (Eds.). Red de vigilancia para la conservación y protección de las aguas marinas y costeras de Colombia – REDCAM: INVEMAR, MADS y CAR costeras. Informe técnico 2016. Serie de Publicaciones Periódicas No. 4 (2017) del INVEMAR, Santa Marta. 260 p. https://doi.org/10.21239/V9HW3X | spa |
dc.relation.references | Liu H, Wang J, Wang A, Chen J. Chemical inhibitors of methanogenesis and putative applications. Appl Microbiol Biotechnol [Internet]. 2011 [Accessed 2018 November 18]; 89: 1333-1340. Available from: https://doi.org/10.1007/s00253-010-3066-5 | spa |
dc.relation.references | Karhadkar PP, Audic JM, Faup GM, Khanna P. Sulfide and sulfate inhibition of methanogenesis. Water Research [Internet]. 1987 [Accessed 2018 November 18]; 21(9): 1061-1066. Available from: https://doi.org/10.1016/0043-1354(87)90027-3 | spa |
dc.relation.references | Shen, L., Hu, B., Liu, S. et al. Distribution and Diversity of Nitrite-Dependent Anaerobic Methane-Oxidising Bacteria in the Sediments of the Qiantang River. Appl Microbiol Biotechnol [Internet]. 2016 [Accessed 2019 April 01]; 100: 7171. Available from: https://doi.org/10.1007/s00253-016-7627-0 | spa |
dc.relation.references | Monroy FL, Ghinaglia LT, Poblete E, González LV. Dinámica de los nutrientes en una laguna costera tropical hipersalina (Las Marites, Isla de Margarita, Venezuela). Revista Bio Ciencias, [Internet].2017 [Accessed 2018 November 18]; 4(6). Available from: https://doi.org/10.15741/revbio.04.06.04 | spa |
dc.relation.references | Lüke C, Speth DR, Kox MA, Villanueva L, Jetten MS. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. PeerJ, [Internet]. 2016 [Accessed 2018 November 18]; 4, e1924. Available from: https://doi.org/10.7717/peerj.1924 | spa |
dc.relation.references | Dias ACF, Pereira e Silva, Michele de Cassia, et al. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected brazilian mangrove sediments. Applied and Environmental Microbiology. [Internet]. 2012 [Accessed 2018 November 18]; 78(22): 7960-7967. Available from: https://doi.org/10.1128/AEM.02273-12 | spa |
dc.relation.references | Puente EM, Holguin G, Glick BR, Bashan Y. Root-surface colonization of black mangrove seedlings by Azospirillum halopraeferens and Azospirillum brasilense in seawater. FEMS Microbiology Ecology. [Internet]. 1999 [Accessed 2018 November 18]; 29(3): 283–292, Available from: https://doi.org/10.1111/j.1574-6941.1999.tb00619.x | spa |
dc.relation.references | Vareeket R, Soytong K. Screening of Photosynthetic Bacteria, Rhodospirllum centenum for Stimulation of Rice Seed Germination. International Journal of Agricultural Technology [Internet]. 2016 [Accessed 2018 November 18]; 12(7.1): 1451-1455. Available from: http://www.aatsea.org/images/conference_publications/pdf/v12_n7_1_2016_DecemberS pecialissue/Aricultural%2012no7.1%20(1451-1456)%201.pdf | spa |
dc.relation.references | Ahmad Maqshoof, Zahir A, Nazli Farheen, Akram Fareeha, Arshad Muhammad, Khalid Muhammad. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz. J. Microbiol [Internet]. 2013 [Accessed 2018 November 18]; 44 (4): 1341-1348. Available from: http://dx.doi.org/10.1590/S1517-83822013000400045 | spa |
dc.relation.references | Chuang PC, Young MB, Dale AW, Miller L, Herrera-Silveira JA, Paytan A. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatan, Mexico. Biogeosciences (BG) [Internet]. 2016 [Accessed 2018 November 18]; 13(10):2981-3001. Available from: http://dx.doi.org/10.5194/bg-13-2981-2016 | spa |
dc.relation.references | Kristensen E, Bouillon S, Dittmar T, Marchand C. Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany [Internet]. 2008 [Accessed 2018 November 18]; 89: 201-219.Available from: https://doi.org/10.1016/j.aquabot.2007.12.005 | spa |
dc.relation.references | Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nature reviews microbiology [Internet]. 2008 [Accessed 2018 November 18]; 6(6): 441- 454. Available from: https://doi.org/10.1038/nrmicro1892 | spa |
dc.relation.references | Varon‐ Lopez M, Dias ACF, Fasanella CC, Durrer A, Melo IS, Kuramae EE, Andreote FD. Sulphur‐ oxidizing and sulphate‐ reducing communities in Brazilian mangrove sediments. Environmental microbiology [Internet]. 2014 [Accessed 2018 November 18]; 16(3): 845-855. Available from: https://doi.org/10.1111/1462-2920.12237 | spa |
dc.relation.references | Foti M., Sorokin DY, Lomans B, et al. Diversity, activity, and abundance of sulfate- reducing bacteria in saline and hypersaline soda lakes. Applied and environmental microbiology [Internet]. 2007 [Accessed 2018 November 18]; 73(7): 2093-2100. Available from: https://doi.org/10.1128/AEM.02622-06 | spa |
dc.relation.references | Tatjana P. Tourova, Natalija V. Slobodova, Boris K. Bumazhkin, Tatjana V. Kolganova, Gerard Muyzer, Dimitry Y. Sorokin. Analysis of community composition of sulfur- oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular marker. FEMS Microbiology Ecology [Internet]. 2013 [Accessed 2018 November 18]; 84 (2): 280–289. Available from: https://doi.org/10.1111/1574-6941.12056 | spa |
dc.relation.references | Alongi DM. Present state and future of the world's mangrove forests. Environmental Conservation [Internet]. 2002 [Accessed 2018 November 18]; 29(3): 331-349. Available from: https://doi.org/10.1017/S0376892902000231 | spa |
dc.relation.references | Masalkara PD, Roberts DM. Glutamine synthetase isoforms in nitrogen-fixing soybean nodules: Distinct oligomeric structures and thiol-based regulation. FEBS Letters [Internet]. 2015 [Accessed 2018 November 18]; 589 (2): 215–221. Available from: https://doi.org/10.1016/j.febslet.2014.11.048 | spa |
dc.relation.references | Balotf S, Kavoosi G, Kholdebarin B. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen‐ starved wheat seedlings. Biotechnology and applied biochemistry, [Internet]. 2016 [Accessed 2018 November 18]; 63(2), 220-229. Available from: https://doi.org/10.1002/bab.1362 | spa |
dc.relation.references | Suzuki M, Arai M, Ishii M, Igarashi Y. Gene Structure and Expression Profile of Cytochrome bc Nitric Oxide Reductase from Hydrogenobacterthermophilus TK-6. Bioscience, Biotechnology, and Biochemistry [Internet]. 2006 [Accessed 2018 November 18]; 70(7): 1666–1671. Available from: https://doi.org/10.1271/bbb.60018Suzuki M, Arai M, Ishii M, Igarashi Y. Gene Structure and Expression Profile of Cytochrome bc Nitric Oxide Reductase from Hydrogenobacterthermophilus TK-6. Bioscience, Biotechnology, and Biochemistry [Internet]. 2006 [Accessed 2018 November 18]; 70(7): 1666–1671. Available from: https://doi.org/10.1271/bbb.60018 | spa |
dc.relation.references | Yu Z, Liu J, Li Y, Jin J, Liu X, Wang G. Impact of land use, fertilization and seasonal variation on the abundance and diversity of nirS-type denitrifying bacterial communities in a Mollisol in Northeast China. European Journal of Soil Biology [Internet]. 2018 [Accessed 2018 November 18]; 85: 4-11. Available from: https://doi.org/10.1016/j.ejsobi.2017.12.001 | spa |
dc.relation.references | Stoeva MK, Coates JD. Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. Microbiology [Internet]. 2019 [Accessed 2019 March 18]; 165(3):254-269. Available from: https://dx.doi.org/10.1099/mic.0.000750 | spa |
dc.relation.references | Gumiere T, Gumiere SJ, Matteau JP, Constant P, Letourneau G, Rousseau AN. Soil bacterial community associated with high potato production and minimal water use. Frontiers in Environmental Science. [Internet]. 2018 [Accessed 2018 November 18]; 6:161. Available from: https://doi.org/10.3389/fenvs.2018.00161 | spa |
dc.relation.references | Mikkelsen R, Baunsgaard L, Blennow A. Functional characterization of alpha-glucan, water dikinase, the starch phosphorylating enzyme. Biochem J [Internet]. 2004 [Accessed 2018 November 18]; 377(2):525-532. Available from: https://dx.doi.org/10.1042%2FBJ20030999 | spa |
dc.relation.references | Huang J, Chen L, Hu N, et al. Characterization of a novel serine hydroxymethyltransferase isolated from marine bacterium Arthrobacter sp. and its application on L-serine production. Ann Microbiol [Internet]. 2015 [Accessed 2018 November 18]; 65:1689. Available from: https://doi.org/10.1007/s13213-014-1008-7 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | Nitrógeno | |
dc.subject.lemb | azufre | |
dc.subject.lemb | metano | |
dc.subject.proposal | Salinidad | spa |
dc.subject.proposal | Manglar | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |