Mostrar el registro sencillo del ítem
Análisis retrospectivo de la técnica CRISPR-Cas: una herramienta metodológica con potencial para el diagnóstico de enfermedades virales
dc.contributor.advisor | Rodríguez Panduro, Mauricio Humberto | |
dc.contributor.author | Rodríguez Pineda, Jeimy Tatiana | |
dc.date.accessioned | 2021-11-05T00:17:21Z | |
dc.date.available | 2021-11-05T00:17:21Z | |
dc.date.issued | 2019-07 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/3603 | |
dc.description.abstract | El descubrimiento de los sistemas CRISPR-Cas lleva una larga trayectoria desde su descripción inicial en 1987 con aplicaciones en el área de la edición genética con CRISPR-Cas9, en el área agrícola y específicamente en el diagnóstico de enfermedades virales. El sistema CRISPR-Cas13a y Cas12a brinda al Bacteriólogo y laboratorista clínico una herramienta para el diagnóstico de enfermedades virales, permitiendo la identificación de secuencias de ácidos nucleicos específicas de cualquier microorganismo de manera altamente eficaz, precisa y económica. Desde su descubrimiento como un sistema de inmunidad adaptativa en organismos procariotas, sus características estructurales y funciones han sido estudiadas y redefinidas hasta conocer como CRISPR-Cas13a y Cas12a incrementan la versatilidad del sistema para su empleo en el área de la salud e investigación. En el presente trabajo se realiza una revisión teórica de las características generales, estructurales y funcionales de CRISPR-Cas13a y Cas12a proteínas que juegan un papel fundamental en uso de la herramienta CRISPR-Cas para el diagnóstico de enfermedades virales, así como las aplicaciones que perfilan el sistema como una de las más novedosas y eficaces herramientas biotecnológicas conocidas. | spa |
dc.description.tableofcontents | LISTA DE TABLAS 7 LISTA DE FIGURAS 8 RESUMEN 16 1. INTRODUCCION 17 2. OBJETIVOS 19 2.1. Objetivo general 19 2.2. Objetivos específicos 19 3. ANTECEDENTES 20 4. MARCO TEÓRICO 23 4.1. Edición génica 23 4.2 Nucleasas de dedos de Zinc (ZFN) 25 4.3. Nucleasas de tipo activadores de la transcripción (TALENS) 26 4.4. REPETICIONES PALINDRÓMICAS CORTAS AGRUPADAS Y REGULARMENTE INTERESPACIADAS (CRISPR) 26 4.4.1. SISTEMA CRISPR-Cas y su historia 26 4.5. Clasificación del sistema CRISPR-Cas 27 4.5.1. Proteínas asociadas (Cas) 30 4.6. Mecanismo de acción de CRISPR-Cas 32 4.7. Aplicaciones del sistema CRISPR-Cas 34 4.7.1. Fibrosis quística 34 4.7.2. Enfermedades neuromusculares 35 4.7.3. Retinitis pigmentosa 36 4.7.4. Cáncer 36 4.7.5. Virus de la Inmunodeficiencia Humana (VIH) 37 4.8. Enfermedades virales de importancia en salud pública 38 4.8.1. Enfermedad por el virus del papiloma humano VPH 39 4.8.2. Cáncer cervical 40 4.8.3. Enfermedad por el virus de Zika 41 4.8.4. Enfermedad por el virus del dengue 43 4.8.5. Enfermedad por el virus de la fiebre amarilla 45 4.9. PRUEBAS EMPLEADAS PARA EL DIAGNÓSTICO DE ENFERMEDADES VIRALES EN COLOMBIA 47 4.9.1. Cultivo celular 47 4.9.2. Amplificación de Acidos Nucleicos NAATS 48 4.9.3. Reacción en cadena de la polimerasa o PCR 49 4.9.4. RT-PCR 52 4.9.5. Secuenciación de Segunda generación NGS 52 4.9.6. Espectrofotometría de masas 52 4.9.7. Inmunoensayos 53 4.9.8. Inmunofluorescencia 53 5. IMPORTANCIA DEL DIAGNÓSTICO DE ENFERMEDADES VIRALES 57 6. CRISPR-Cas UNA HERRAMIENTA CON POTENCIAL PARA EL DIAGNÓSTICO DE ENFERMEDADES VIRALES 59 7. SHERLOCK 60 7.1. Estudios realizados aplicando la herramienta de diagnóstico SHERLOCKv2 63 7.2. Preparación de las muestras 64 7.3. DETECTR 68 8. Estudios realizados aplicando la herramienta de diagnóstico DETECTR 69 9. IMPLICACIONES PARA COLOMBIA Y LA BACTERIOLOGÍA 72 10. METODOLOGÍA 75 11. RESULTADOS 77 12. RESULTADOS MÁS RELEVANTES DE LOS ARTÍCULOS REVISADOS 80 12.1 EDICIÓN GÉNICA 80 12.2. Diagnóstico de enfermedades virales 80 13. DISCUSIÓN 83 REFERENCIAS 89 | spa |
dc.format.extent | 102p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2019 | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Análisis retrospectivo de la técnica CRISPR-Cas: una herramienta metodológica con potencial para el diagnóstico de enfermedades virales | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.identifier.barcode | 60078 | |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá DC | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Souf S. Recent advances in diagnostic testing for viral infections. Biosci Horizons [Internet]. 2016 Jan 1 [cited 2019 Apr 29];9. Available from: https://academic.oup.com/biohorizons/article- lookup/doi/10.1093/biohorizons/hzw010 | spa |
dc.relation.references | Ojanguren S. El Universal - Estilos - La importancia de un adecuado análisis clínico [Internet]. El universal Estilos. 2008 [cited 2019 Apr 27]. Available from: http://archivo.eluniversal.com.mx/estilos/60670.html | spa |
dc.relation.references | Watson J, Crick F. Estructura molecular de los ácidos nucleicos [Internet]. [cited 2019 Jun 24]. Available from: http://docentes.educacion.navarra.es/metayosa/pdf/Estructura molecular de los ácidos nucleicos.pdf | spa |
dc.relation.references | Mateos P. TECNOLOGÍA DEL DNA RECOMBINANTE IN VITRO [Internet]. [cited 2019 Jun 24]. Available from: https://www.researchgate.net/publication/261983463_TECNOLOGIA_DEL_ DNA_RECOMBINANTE_IN_VITRO | spa |
dc.relation.references | Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol [Internet]. 1987 Dec;169(12):5429–33. Available from: https://www.ncbi.nlm.nih.gov/pubmed/3316184 | spa |
dc.relation.references | Mojica FJM, Diez-Villasenor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol [Internet]. 2000 Apr [cited 2019 Apr 27];36(1):244–6. Available from: http://doi.wiley.com/10.1046/j.1365- 2958.2000.01838.x | spa |
dc.relation.references | Jansen R, Embden JDA van, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol [Internet]. 90 2002 Mar [cited 2019 Apr 28];43(6):1565–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11952905 | spa |
dc.relation.references | Cordero P. Zika o papiloma humano, nuevos objetivos de las CRISPR [Internet]. Saludigital. 2018 [cited 2019 Apr 27]. Available from: https://www.consalud.es/saludigital/100/enfermedades-raras-zika-o- papiloma-humano-objetivos-de-las-crispr_47698_102.html | spa |
dc.relation.references | Makarova KS. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res [Internet]. 2002 Jan 15 [cited 2019 Apr 27];30(2):482–96. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/30.2.482 | spa |
dc.relation.references | Guy CP. A novel nuclease-ATPase (Nar71) from archaea is part of a proposed thermophilic DNA repair system. Nucleic Acids Res [Internet]. 2004 Nov 29 [cited 2019 Apr 27];32(21):6176–86. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkh960 | spa |
dc.relation.references | Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology [Internet]. 2005 Aug 1 [cited 2019 Apr 27];151(8):2551–61. Available from: http://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.28 048-0 | spa |
dc.relation.references | Hao M, Cui Y, Qu X. Analysis of CRISPR-Cas System in Streptococcus thermophilus and Its Application. Front Microbiol [Internet]. 2018 [cited 2019 Jun 25];9:257. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29515542 | spa |
dc.relation.references | Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, et al. Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science (80- ) [Internet]. 2008 Aug 15 [cited 2019 Apr 27];321(5891):960–4. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1159689 | spa |
dc.relation.references | Kim S, Kim D, Cho SW, Kim J, Kim J-S. Highly efficient RNA-guided genome 91 editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res [Internet]. 2014 Jun 1 [cited 2019 Apr 27];24(6):1012–9. Available from: http://genome.cshlp.org/cgi/doi/10.1101/gr.171322.113 | spa |
dc.relation.references | Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science (80- ) [Internet]. 2014 Nov 28 [cited 2019 Apr 27];346(6213):1258096–1258096. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25430774 | spa |
dc.relation.references | Navarre (Spain). Departamento de Salud. D, García Fuentes M. ENFERMEDADES DE BASE GENÉTICA [Internet]. Vol. 31, Anales del Sistema Sanitario de Navarra. Gobierno de Navarra, Departamento de Salud; 2008 [cited 2019 Apr 28]. 105–126 p. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137- 66272008000400008 | spa |
dc.relation.references | Mora A. ¿Qué es la tecnología CRISPR/Cas9 y cómo nos cambiará la vida? | Dciencia [Internet]. Dciencia. 2015 [cited 2019 Apr 27]. Available from: http://www.dciencia.es/que-es-la-tecnologia-crispr-cas9/ | spa |
dc.relation.references | Hansen K, Coussens MJ, Sago J, Subramanian S, Gjoka M, Briner D. Genome Editing with CompoZr Custom Zinc Finger Nucleases (ZFNs). J Vis Exp [Internet]. 2012 Jun 14 [cited 2019 Apr 27];(64):e3304. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22732945 | spa |
dc.relation.references | Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A [Internet]. 1996 Feb 6 [cited 2019 Apr 27];93(3):1156–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8577732 | spa |
dc.relation.references | Revolución CRISPR L. The CRISPR Revolution [Internet]. [cited 2019 Apr 28]. Available from: https://repositorio.unican.es/xmlui/bitstream/handle/10902/14357/Herran de la Gala Dario.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Jorge Y, Ramírez P, Campeche E. EDICIÓN DE GENOMAS CON NUCLEASAS SITIO-DIRIGIDAS CONTENIDO [Internet]. [cited 2019 Apr 27]. Available from: https://www.conacyt.gob.mx/cibiogem/images/cibiogem/Herramientas- ensenanza-investigacion/Seminarios/Docs/Ed-genomas-nucleasas- dirigidas.pdf | spa |
dc.relation.references | Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol [Internet]. 2013 Jan [cited 2019 Apr 27];14(1):49–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23169466 | spa |
dc.relation.references | Moore R, Chandrahas A, Bleris L. Transcription Activator-like Effectors: A Toolkit for Synthetic Biology. ACS Synth Biol [Internet]. 2014 Oct 17 [cited 2019 Apr 27];3(10):708–16. Available from: http://pubs.acs.org/doi/10.1021/sb400137b | spa |
dc.relation.references | Mojica FJM, Daez-Villaseñor C, Garcia-Martinez J, Soria E. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. J Mol Evol [Internet]. 2005 Feb [cited 2019 Apr 27];60(2):174–82. Available from: http://link.springer.com/10.1007/s00239- 004-0046-3 | spa |
dc.relation.references | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science (80- ) [Internet]. 2012 Aug 17 [cited 2019 Apr 27];337(6096):816–21. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1225829 | spa |
dc.relation.references | Canet López D, Castiñeira IO. CRISPR-Cas9: Técnicas y aplicaciones [Internet]. 2017 [cited 2019 Jun 24]. Available from: http://openaccess.uoc.edu/webapps/o2/bitstream/10609/63825/6/dacalo4TF M0617memoria.pdf | spa |
dc.relation.references | Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR- 93 associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol [Internet]. 2005 Nov [cited 2019 Apr 28];1(6):e60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16292354 | spa |
dc.relation.references | Biología GE. Ingeniería genómica mediante sistemas CRISPR-Cas. 2014 [cited 2019 Jun 25]; Available from: https://rua.ua.es/dspace/bitstream/10045/49146/1/Ingenieria_genomica_med iante_sistemas_CRISP_LOPEZ_MANCHENO_YAIZA_ARACELI.pdf | spa |
dc.relation.references | Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science (80- ) [Internet]. 2018 Apr 27 [cited 2019 Apr 27];360(6387):436–9. Available from: http://www.sciencemag.org/lookup/doi/10.1126/science.aar6245 | spa |
dc.relation.references | Abudayyeh, Omar. Gootenberg J. Cas13 — Zhang Lab [Internet]. Zhang Lab. [cited 2019 Apr 27]. Available from: https://zlab.bio/cas13 | spa |
dc.relation.references | Fernanda Lammoglia-Cobo M, Lozano-Reyes R, Daniel García-Sandoval C, Michelle Avilez-Bahena C, Trejo-Reveles V, Balam Muñoz-Soto R, et al. La revolución en ingeniería genética: sistema CRISPR/Cas [Internet]. Vol. 5. [cited 2019 Apr 27]. Available from: www.medigraphic.org.mx | spa |
dc.relation.references | Pardo Piñón M. Grado en Bioloxía Memoria do Traballo de Fin de Grao Overview of the CRISPR-Cas system and design of sgRNAs (single guide RNAs) for genomic DNA editing in yeast [Internet]. 2017 [cited 2019 Apr 27]. Available from: https://ruc.udc.es/dspace/bitstream/handle/2183/19673/PardoPinon_Marta_T FG_2017.pdf.pdf?sequence=2&isAllowed=y | spa |
dc.relation.references | Moran A. Nuevos usos de la tecnología CRISPR: El diagnóstico | Dciencia [Internet]. Dciencia. 2018 [cited 2019 Apr 27]. Available from: http://www.dciencia.es/nuevos-usos-de-la-tecnologia-crispr-el-diagnostico/ | spa |
dc.relation.references | Kirchner M, Schneider S. CRISPR-Cas: From the Bacterial Adaptive Immune 94 System to a Versatile Tool for Genome Engineering. Angew Chemie Int Ed [Internet]. 2015 Nov 9 [cited 2019 Apr 28];54(46):13508–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26382836 | spa |
dc.relation.references | Belinchón A maria. Tecnología CRISPR: aplicaciones y límites de la edición genómica [Internet]. EFE: SALUD. 2017 [cited 2019 Apr 27]. Available from: https://www.efesalud.com/edicion-genomica-humanos/ | spa |
dc.relation.references | Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res [Internet]. 2014 Sep [cited 2019 Apr 28];24(9):1526–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25096406 | spa |
dc.relation.references | Schwank G, Koo B-K, Sasselli V, Dekkers JF, Heo I, Demircan T, et al. Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell Stem Cell [Internet]. 2013 Dec 5 [cited 2019 Apr 28];13(6):653–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24315439 | spa |
dc.relation.references | Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, et al. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep [Internet]. 2015 Sep 1 [cited 2019 Apr 28];12(9):1385–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26299960 | spa |
dc.relation.references | Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem cell reports [Internet]. 2015 Jan 13 [cited 2019 Apr 28];4(1):143–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25434822 | spa |
dc.relation.references | Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat 95 Commun [Internet]. 2015 Dec 18 [cited 2019 Apr 28];6(1):6244. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25692716 | spa |
dc.relation.references | Chang C-W, Lai Y-S, Westin E, Khodadadi-Jamayran A, Pawlik KM, Lamb LS, et al. Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting. Cell Rep [Internet]. 2015 Sep 8 [cited 2019 Apr 28];12(10):1668–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26321643 | spa |
dc.relation.references | Bassuk AG, Zheng A, Li Y, Tsang SH, Mahajan VB. Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells. Sci Rep [Internet]. 2016 Apr 27 [cited 2019 Apr 28];6(1):19969. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26814166 | spa |
dc.relation.references | Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature [Internet]. 2014 Aug 6 [cited 2019 Apr 28];514(7522):380–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25119044 | spa |
dc.relation.references | Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med [Internet]. 2015 Mar 23 [cited 2019 Apr 28];21(3):256–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25706875 | spa |
dc.relation.references | Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science (80- ) [Internet]. 2017 Oct 13 [cited 2019 Apr 28];358(6360):234–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28912133 | spa |
dc.relation.references | Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han Y-C, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature [Internet]. 2014 Dec 22 [cited 2019 Apr 28];516(7531):423–7. Available from: 96 http://www.ncbi.nlm.nih.gov/pubmed/25337876 | spa |
dc.relation.references | Hou P, Chen S, Wang S, Yu X, Chen Y, Jiang M, et al. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep [Internet]. 2015 Dec 20 [cited 2019 Apr 28];5(1):15577. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26481100 | spa |
dc.relation.references | Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci [Internet]. 2014 Jul 1 [cited 2019 Apr 28];111(26):9591–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24927590 | spa |
dc.relation.references | Mandal PK, Ferreira LMR, Collins R, Meissner TB, Boutwell CL, Friesen M, et al. Efficient Ablation of Genes in Human Hematopoietic Stem and Effector Cells using CRISPR/Cas9. Cell Stem Cell [Internet]. 2014 Nov 6 [cited 2019 Apr 28];15(5):643–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25517468 | spa |
dc.relation.references | Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, et al. Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Sci Rep [Internet]. 2016 Apr 4 [cited 2019 Apr 28];6(1):22555. Available from: http://www.nature.com/articles/srep22555 | spa |
dc.relation.references | Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X, et al. In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models. Mol Ther [Internet]. 2017 May 3 [cited 2019 Apr 28];25(5):1168–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28366764 | spa |
dc.relation.references | Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L, et al. CRISPR/Cas9‐mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med [Internet]. 2016 May 1 [cited 2019 Apr 27];8(5):477–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26964564 | spa |
dc.relation.references | Regalado A. Los cultivos modificados genéticamente mediante CRISPR llegarán al mercado en cinco años | MIT Technology Review [Internet]. MIT Technology Review. 2015 [cited 2019 Apr 27]. Available from: https://www.technologyreview.es/s/5252/los-cultivos-modificados- geneticamente-mediante-crispr-llegaran-al-mercado-en-cinco-anos | spa |
dc.relation.references | Irizarry guash. La importancia de los examenes de laboratorio clínico de rutina o de prevención – Laboratorio Clínico Irizarry Guasch [Internet]. Laboratorio clinico irizarry guash. [cited 2019 Apr 27]. Available from: http://www.milaboratoriopr.com/la-importancia-de-los-examenes-de- laboratorio-clinico-de-rutina-o-de-prevencion/ | spa |
dc.relation.references | Mayo clinic. Infección por VPH - Síntomas y causas - Mayo Clinic [Internet]. Mayo clinic. 2018 [cited 2019 Apr 27]. Available from: https://www.mayoclinic.org/es-es/diseases-conditions/hpv- infection/symptoms-causes/syc-20351596 | spa |
dc.relation.references | Mayo clinic. Infección por VPH - Diagnóstico y tratamiento - Mayo Clinic [Internet]. Mayo clinic. 2018 [cited 2019 Apr 27]. Available from: https://www.mayoclinic.org/es-es/diseases-conditions/hpv- infection/diagnosis-treatment/drc-20351602 | spa |
dc.relation.references | OMS. Enfermedad por el virus de Zika [Internet]. Organización Mundial de la Salud . 2018 [cited 2019 Apr 27]. Available from: https://www.who.int/es/news-room/fact-sheets/detail/zika-virus | spa |
dc.relation.references | Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis [Internet]. 2008 Aug [cited 2019 Apr 28];14(8):1232–9. Available from: http://wwwnc.cdc.gov/eid/article/14/8/08-0287_article.htm | spa |
dc.relation.references | Rabe IB, Staples JE, Villanueva J, Hummel KB, Johnson JA, Rose L, et al. Interim Guidance for Interpretation of Zika Virus Antibody Test Results. MMWR Morb Mortal Wkly Rep [Internet]. 2016 Jun 3 [cited 2019 Apr 98 28];65(21):543–6. Available from: http://www.cdc.gov/mmwr/volumes/65/wr/mm6521e1.htm | spa |
dc.relation.references | Cabezas C, García P. Diagnóstico de la infección por el virus zika. An la Fac Med [Internet]. 2017 May 16 [cited 2019 Apr 27];78(1):89. Available from: http://revistasinvestigacion.unmsm.edu.pe/index.php/anales/article/view/130 28 | spa |
dc.relation.references | Ministerio de Salud y Protección Social-Federación Médica Colombiana. Memorias Dengue [Internet]. 2012 [cited 2019 Apr 27]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/TH/Me morias_dengue.pdf | spa |
dc.relation.references | Hospital Nacional de Ni os Dr. Carlos Sáenz Herrera (Costa Rica) I, Avila ML. Diagnóstico clinico y de laboratorio del paciente con dengue [Internet]. Vol. 34, Revista Médica del Hospital Nacional de Niños Dr. Carlos Sáenz Herrera. Hospital Nacional de Ni os Dr. Carlos Sáenz Herrera; 1999 [cited 2019 Apr 28]. 33–41 p. Available from: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1017- 85461999000100004 | spa |
dc.relation.references | enfermedades infecciosas fiebre amarilla Diagnóstico de Fiebre Amarilla GUIA PARA EL EQUIPO DE SALUD 2da. edición [Internet]. [cited 2019 Apr 27]. Available from: http://www.msal.gob.ar/images/stories/bes/graficos/0000000064cnt-01-guia- fiebre-amarilla.pdf | spa |
dc.relation.references | del Pilar Crespo M, microbióloga B, Fundación Valle del Lili C. El diagnóstico viral por el laboratorio. 2000 [cited 2019 Jun 24];31:17. Available from: http://www.redalyc.org/pdf/283/28331306.pdf | spa |
dc.relation.references | Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science (80- ) [Internet]. 2018 Apr 27 [cited 2019 Apr 27];360(6387):439–44. Available from: 99 http://www.sciencemag.org/lookup/doi/10.1126/science.aaq0179 | spa |
dc.relation.references | C BD. Revisión sistemática de la literatura sobre la efectividad de las pruebas de Ácido Nucleico (NAT) para la detección de los virus de hepatitis B, hepatitis C y Virus de Inmunodeficiencia Humana (VIH) en donaciones de sangre Dirección de Medicamentos y Tecnologías en Salud [Internet]. 2016 [cited 2019 Jun 25]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/R evision-sistematica-nat-donaciones-sangre.pdf | spa |
dc.relation.references | Garrido m. PCR [Internet]. PCR. [cited 2019 Apr 27]. Available from: https://www.ugr.es/~mgarrido/PCR.htm | spa |
dc.relation.references | Deepak S, Kottapalli K, Rakwal R, Oros G, Rangappa K, Iwahashi H, et al. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes. Curr Genomics [Internet]. 2007 Jun [cited 2019 Jun 25];8(4):234–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18645596 | spa |
dc.relation.references | SECUENCIACIÓN DE NUEVA GENERACIÓN (NGS). [cited 2019 Jun 25]; Available from: www.cgcgenetics.com | spa |
dc.relation.references | De Biotecnología I. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO [Internet]. [cited 2019 Jun 25]. Available from: http://www.ibt.unam.mx/computo/pdfs/met/inmunoquimica.pdf | spa |
dc.relation.references | ENZYME LINKED IMMUNO SORBENT ASSAY Dra. Nora Fernández-2007 [Internet]. [cited 2019 Apr 27]. Available from: http://www.higiene.edu.uy/parasito/trabajos/elisa.pdf | spa |
dc.relation.references | Inmunofluorescencia [Internet]. [cited 2019 Apr 27]. Available from: http://www.iib.unsam.edu.ar/archivos/docencia/licenciatura/biotecnologia/201 7/BioCel/1504124326.pdf | spa |
dc.relation.references | Universidad Nacional de Colombia. Facultad de Medicina. MA. influenza A H1N1 de origen porcino, metodos diagnosticos [Internet]. Vol. 58, Revista de la Facultad de Medicina. Universidad Nacional de Colombia; 2010 [cited 100 2019 Jun 27]. 44–59 p. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120- 00112010000100005 | spa |
dc.relation.references | Rodríguez Iglesias M, Pernía AT. Capítulo 6 DIAGNÓSTICO DE LA INFECCIÓN POR EL VIH [Internet]. [cited 2019 Jun 27]. Available from: https://www.minsalud.gov.co/salud/Documents/observatorio_vih/documentos /Acceso_al_diagnostico/1_Diagnostico_en_ITS_VIH_Sida/b.Proceso_diagno stico/pruebas dx vih.pdf | spa |
dc.relation.references | Daniela Sandin M. METODOS DE ESTUDIO Y DIAGNOSTICO VIRAL [Internet]. [cited 2019 Jun 27]. Available from: http://higiene.edu.uy/cefa/Libro2002/Cap 8.pdf | spa |
dc.relation.references | Chertow DS. Next-generation diagnostics with CRISPR. Science (80- ) [Internet]. 2018 Apr 27 [cited 2019 Apr 27];360(6387):381–2. Available from: http://www.sciencemag.org/lookup/doi/10.1126/science.aat4982 | spa |
dc.relation.references | Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science (80- ) [Internet]. 2018 Apr 27 [cited 2019 Apr 27];360(6387):444–8. Available from: http://www.sciencemag.org/lookup/doi/10.1126/science.aas8836 | spa |
dc.relation.references | Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Supplementary Materials for Field-deployable viral diagnostics using CRISPR-Cas13. Science (80- ) [Internet]. 2018 [cited 2019 Apr 28];360:444. Available from: www.sciencemag.org/content/360/6387/444/suppl/DC1 | spa |
dc.relation.references | Orden BEATRIZ LONDOÑO SOTO L, Lucía Ospina Martínez M, Julio Muñoz Muñoz N, LUBÍN BURGOS BERNAL Secretario General G, Gonzalo López Casas J. LINEAMIENTOS TÉCNICOS Y OPERATIVOS PARA LA VACUNACIÓN CONTRA EL VIRUS DEL PAPILOMA HUMANO (VPH) [Internet]. Colombia; 2012 [cited 2019 Apr 27]. Available from: https://www.minsalud.gov.co/salud/Documents/Lineamientos VPH.pdf | spa |
dc.relation.references | Navarre (Spain). Departamento de Salud. JJ. La efectividad de la detección precoz de enfermedades [Internet]. Vol. 30, Anales del Sistema Sanitario de Navarra. Gobierno de Navarra, Departamento de Salud; 2007 [cited 2019 Apr 28]. 11–27 p. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137- 66272007000100002 | spa |
dc.relation.references | Padilla JC, Lizarazo E, Murillo OL, Mendigaña FA, Pachón E, Vera MJ. Transmisión de las ETV en Colombia, 1990-2016 ARTÍCULO ORIGINAL. Biomédica [Internet]. 2017 [cited 2019 Apr 28];37(2):27–40. Available from: http://www.scielo.org.co/pdf/bio/v37s2/0120-4157-bio-37-s2-00027.pdf | spa |
dc.relation.references | GEOGRAFÍA Y SALUD EN COLOMBIA [Internet]. [cited 2019 Apr 28]. Available from: http://www.lasalle.edu.co/site_vice- | spa |
dc.relation.references | BES Boletín Epidemiológico Semana. Semana epidemiológica 1 [Internet]. [cited 2019 Apr 28]. Available from: www.ins.gov.co | spa |
dc.relation.references | Rodriguez, Martha. Peña C. Manual tecnico para laboratorios clinicos republica de colombia [Internet]. Ministerio de Salud. 1997 [cited 2019 Apr 27]. Available from: https://es.slideshare.net/stejadac/manual-tecnico-para- laboratorios-clinicos-republica-de-colombia | spa |
dc.relation.references | usuario. CAPÍTULO 5 Procedimientos de Laboratorio [Internet]. [cited 2019 Apr 28]. Available from: http://bibing.us.es/proyectos/abreproy/4821/fichero/MEMORIA%252FCAPIT ULO+5.pdf | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | CRISPR-Cas12a | |
dc.subject.lemb | enfermedades virales | |
dc.subject.lemb | diagnóstico | |
dc.subject.proposal | edición génica | spa |
dc.subject.proposal | CRISPR-Cas13a | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |