Show simple item record

dc.contributor.advisorArarat Sarría, Mónica
dc.contributor.advisorRodríguez Panduro, Mauricio Humberto
dc.contributor.authorFlórez Arenas, Zulma Julieth
dc.date.accessioned2021-06-30T14:05:16Z
dc.date.available2021-06-30T14:05:16Z
dc.date.issued2019-10
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/306
dc.description.abstractPlasmodium falciparum, es el parásito causante de malaria asociado a la mayor morbilidad y mortalidad a nivel mundial. Es un problema de salud pública cada vez más difícil de tratar, debido especialmente al aumento de resistencia por parte del parásito a los antimaláricos actuales; por esta razón es necesaria la búsqueda de nuevas herramientas en pro del control y la erradicación de la enfermedad principalmente enfocadas al desarrollo de vacunas eficaces. Para esto es indispensable la caracterización de proteínas que puedan ser blancos potenciales, como lo son los ligandos de invasión, correspondientes a las familias de antígenos de unión a eritrocito (PfEBAs) y proteínas homólogas de unión a reticulocito (PfRHs), ya que múltiples estudios de expresión transcripcional de los genes que codifican para estos ligandos, han demostrado que son esenciales en el proceso de invasión al eritrocito y que su expresión varía entre diferentes cepas y aislados. Por este motivo, el presente proyecto determinó de manera parcial el perfil transcripcional de genes pertenecientes a estas dos familias, cuantificando su expresión transcripcional mediante la técnica RT-qPCR, en una cepa autóctona de Colombia. Con los resultados obtenidos, se espera dar pie a futuros estudios comparativos con otras cepas del parásito, para así mejorar la comprensión de los fenotipos que utiliza P. falciparum en el proceso de invasión al eritrocito y así mismo buscar métodos para bloquear dicha invasión.spa
dc.description.tableofcontentsResumen 13 1. Introducción 14 2. Objetivos 16 2.1. Objetivo general 16 2.2. Objetivos específicos 16 3. Antecedentes 17 4. Marco referencial 22 4.1. Generalidades 22 4.2. Sintomatología y clasificación de la malaria 22 4.3. Epidemiología 24 4.4. Ciclo biológico del parásito 25 4.4.4. Vías alternas de invasión 28 4.5. Métodos de determinación del fenotipo de invasión32 4.5.1. RT-qPCR 32 5. Materiales y metodos 36 5.1. Tipo de estudio 36 5.3. Variables 36 5.4. Cultivo de parásitos 36 5.5. Extracción de ARN, ADNg y síntesis de ADNc 37 5.6. Estandarización de la técnica RT- qPCR 38 6. Resultados 41 6.1. Cuantificación de las muestras de ADN y ARN 41 6.2. Electroforesis de los genes de los genes pertenecientes a las familias PfRh y PfEBA 42 6.3. PCR tiempo real 43 6.4. Determinación parcial del perfil transcripcional de cada gen 47 7. Discusión 49 Conclusiones 53 Anexos 54 Referencias 56spa
dc.format.extent65p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.relation.ispartofNo objeto asociado
dc.rightsDerechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titlePerfil transcripcional de genes que codifican proteínas de invasión a eritrocito pertenecientes a las familias de ligandos pfeba y pfrh de la cepa fcb2 de plasmodium falciparumspa
dc.typeTrabajo de grado - Pregradospa
dc.contributor.corporatenameUniversidad Colegio Mayor de Cundinamarcaspa
dc.contributor.researchgroupTrabajo de investigaciónspa
dc.coverage.countryColombia
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.description.researchareaTrabajo de investigaciónspa
dc.identifier.barcode60185
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá, Distrito Capitalspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.references1. WHO. Paludismo [Internet]. 2018 [cited 2019 May 5]. Available from: https://www.who.int/es/news-room/fact-sheets/detail/malariaspa
dc.relation.references2. Arévalo-Pinzón G, Curtidor H, Muñoz M, Suarez D, Patarroyo MA, Patarroyo ME. Rh1 high activity binding peptides inhibit high percentages of Plasmodium falciparum FVO strain invasion. Vaccine. 2013;31(14):1830–7.spa
dc.relation.references3. WHO. World Malaria Report. 2018. ISBN 978 92 4 156469 4. [Internet]. 2018. Available from: www.who.int/malariaspa
dc.relation.references4. Castro MC. Malaria Transmission and Prospects for Malaria Eradication : The Role of the Environment. 2017;spa
dc.relation.references5. Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell [Internet]. 2016;167(3):610–24. Available from: http://dx.doi.org/10.1016/j.cell.2016.07.055spa
dc.relation.references6. Tarr SJ, Díaz-Ingelmo O, Stewart LB, Hocking SE, Murray L, Duffy CW, et al. Schizont transcriptome variation among clinical isolates and laboratory-adapted clones of the malaria parasite Plasmodium falciparum. BMC Genomics. 2018;19(1):1–13.spa
dc.relation.references7. Taylor HM, Grainger M, Holder AA. Variation in the expression of a Plasmodium falciparum protein family implicated in erythrocyte invasion. Infect Immun [Internet]. 2002;70(10):5779–89. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=128319&tool=pmcentrez&rendertype=abstractspa
dc.relation.references8. Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CA. Targeting sialic acid dependent and independent pathways of invasion in Plasmodium falciparum. PLoS One. 2012;7(1).spa
dc.relation.references9. Garavito G, Rincón J, Arteaga L, Hata Y, Bourdy G, Gimenez A, et al. Antimalarial activity of some Colombian medicinal plants. J Ethnopharmacol. 2006;107(3):460–2.spa
dc.relation.references10. García-huertas P, Pabón A, Arias C, Blair S. Evaluación del efecto citotóxico y del daño genético de extractos estandarizados de Solanum nudum con actividad anti- Plasmodium. 2013;78–87.spa
dc.relation.references11. Arango E, Carmona-fonseca J, Blair S. Susceptibilidad in vitro de aislamientos colombianos de Plasmodium falciparum a diferentes antipalúdicos. 2008;19(18):213–23.spa
dc.relation.references12. Lopez-Perez M, Villasis E, Machado RLD, Póvoa MM, Vinetz JM, Blair S, et al. Plasmodium falciparum Field Isolates from South America Use an Atypical Red Blood Cell Invasion Pathway Associated with Invasion Ligand Polymorphisms. PLoS One [Internet]. 2012;7(10):e47913. Available from: http://dx.plos.org/10.1371/journal.pone.0047913spa
dc.relation.references13. Curtidor H, Vanegas M, P. Alba M, E. Patarroyo M. Functional, Immunological and Three-Dimensional Analysis of Chemically Synthesised Sporozoite Peptides as Components of a Fully-Effective Antimalarial Vaccine. Curr Med Chem. 2011;18(29):4470–502.spa
dc.relation.references14. Hulse JH. Biotechnologies: Past history, present state and future prospects. Trends Food Sci Technol. 2004;15(1):3–18.spa
dc.relation.references15. Cox FEG. History of discovery of malaria parasites & vectors(171). 2010;(Figure 1):1–9.spa
dc.relation.references16. Sherman IW. Malaria: parasite biology, pathogenesis and protection. 1998. 565 p.spa
dc.relation.references17. Dvorak JA, Miller LH, Whitehouse WC, Shiroishi T. Invasion of Erythrocytes by Malaria Merozoites. Source Sci New Ser [Internet]. 1975;187(4178):748–50. Available from: http://www.jstor.org/stable/173spa
dc.relation.references18. Pasvol G, Jungery M, Weatherall DJ, Parsons SF, Anstee DJ, Tanner MJA. Glycophorin As a Possible Receptor for Plasmodium Falciparum. Lancet. 1982;320(8305):947–50.spa
dc.relation.references19. Pasvol G. Receptors on red cells for Plasmodium falciparum and their interaction with merozoites. Vol. 307, Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 1984. p. 189–200spa
dc.relation.references20. Perkins ME. Binding of glycophorins to Plasmodium falciparum merozoites. Mol Biochem Parasitol. 1984;10(1):67–78.spa
dc.relation.references21. Camus D, Hadley TJ. A Plasmodium falciparum Antigen That Binds to Host Erythrocytes and Merozoites. Adv Sci. 1985;230(4725):553–6.spa
dc.relation.references22. Adams JH, Sim BK, Dolan SA, Fang X, Kaslow DC, Miller LH. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci U S A [Internet]. 1992;89(15):7085–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1496004%0Ahttp://www.pubmedcentral.nih.gov/articspa
dc.relation.references23. Sim BK, Chitnis CE, Wasniowska K, Hadley TJ, Miller LH. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science [Internet]. 1994 Jun 24;264(5167):1941–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/80092spa
dc.relation.references24. Dolan SA, Proctor JL, Alling DW, Okubo Y, Wellems TE, Miller LH. Glycophorin B as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Mol Biochem Parasitol [Internet]. 1994 Mar;64(1):55–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8078523spa
dc.relation.references25. Adams JH, Blair PL, Kaneko O, Peterson DS. An expanding ebl family of Plasmodium falciparum. Trends Parasitol. 2002;17(6):297–9spa
dc.relation.references26. Lobo C-A. Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood [Internet]. 2003 Jun 1;101(11):4628–31. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2002-10-3076spa
dc.relation.references27. Gilberger T-W, Thompson JK, Triglia T, Good RT, Duraisingh MT, Cowman AF. A Novel Erythrocyte Binding Antigen-175 Paralogue from Plasmodium falciparum Defines a New Trypsin-resistant Receptor on Human Erythrocytes. J Biol Chem [Internet]. 2003 Apr 18;278(16):14480–6. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M211446200spa
dc.relation.references28. Rayner JC, Galinski MR, P. I, Barnwell JW. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci U S A [Internet]. 2000;97(17):9648–53. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC16919/spa
dc.relation.references29. Triglia T, Thompson J, Caruana SR, Delorenzi M, Speed T, Cowman AF. Identification of Proteins from Plasmodium falciparum That Are Homologous to Reticulocyte Binding Proteins in Plasmodium vivax. 2001;69(2):1084–92.spa
dc.relation.references30. Rayner JC, Vargas-Serrato E, Huber CS, Galinski MR, Barnwell JW. A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway. J Exp Med [Internet]. 2001 Dec 3;194(11):1571–82. Available from: http://www.jem.org/lookup/doi/10.1084/jem.194.11.1571spa
dc.relation.references31. Taylor HM, Triglia T, Thompson J, Sajid M, Fowler R, Wickham ME, et al. Plasmodium falciparum Homologue of the Genes for Plasmodium vivax and Plasmodium yoelii Adhesive Proteins, Which Is Transcribed but Not Translated. Infect Immun [Internet]. 2001;69(6):3635–3645. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC98354/spa
dc.relation.references32. Blair PL, Witney A, Haynes JD, Moch JK, Carucci DJ, Adams JH. Transcripts of developmentally regulated Plasmodium falciparum genes quantified by real-time RT-PCR. Nucleic Acids Res. 2002;30(10):2224–31.spa
dc.relation.references33. Kaneko O, Mu J, Tsuboi T, Su XZ, Torii M. Gene structure and expression of a Plasmodium falciparum 220-kDa protein homologous to the Plasmodium vivax reticulocyte binding proteins. Mol Biochem Parasitol. 2002;121:275–8.spa
dc.relation.references34. Gaur D, Furuya T, Mu J, Jiang L Bin, Su XZ, Miller LH. Upregulation of expression of the reticulocyte homology gene 4 in the Plasmodium falciparum clone Dd2 is associated with a switch in the erythrocyte invasion pathway. Mol Biochem Parasitol. 2006;145(2):205–15.spa
dc.relation.references35. Tham W, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-quarcoo PB. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. 2010;107(40):17327–32.spa
dc.relation.references36. Triglia T, Duraisingh MT, Good RT, Cowman AF. Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. 2005;55:162–74.spa
dc.relation.references37. Duraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. Embo J. 2003;22(5):1047–57.spa
dc.relation.references38. Sahar T, Reddy KS, Bharadwaj M, Pandey AK, Singh S, Chitnis CE, et al. Plasmodium falciparum reticulocyte binding-like homologue protein 2 (PfRH2) is a key adhesive molecule involved in erythrocyte invasion. PLoS One. 2011;6(2).spa
dc.relation.references39. Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, et al. Reticulocyte-binding protein homologue 5 - An essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol [Internet]. 2009;39(3):371–80. Available from: http://dx.doi.org/10.1016/j.ijpara.2008.10.00spa
dc.relation.references40. Crosnier C, Bustamante L, Bei AK, Theron M, Uchikawa M, Mboup S, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011;480(7378):534–7.spa
dc.relation.references41. Chen L, Lopaticki S, Riglar DT, Dekiwadia C, Uboldi AD, Tham W-H, et al. An EGF-like Protein Forms a Complex with PfRh5 and Is Required for Invasion of Human Erythrocytes by Plasmodium falciparum. Blackman MJ, editor. PLoS Pathog [Internet]. 2011 Sep 1;7(9):e1002199. Available from: http://dx.plos.org/10.1371/journal.ppat.1002199spa
dc.relation.references42. Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci [Internet]. 2015 Jan 27;112(4):1179–84. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1415466112spa
dc.relation.references43. Galaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, et al. P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat Commun [Internet]. 2017 Feb 10;8:14333. Available from: http://www.nature.com/doifinder/10.1038/ncomms14333spa
dc.relation.references44. Espinal, Carlos. Moreno, Edith. Guerra, patricia. De la Vega P. Aislamiento Y Caracterizacion De Cepas Colombianas De Plasmodium Falciparum. 1982;2(3).spa
dc.relation.references45. Harvey KL, Gilson PR, Crabb BS. A model for the progression of receptor-ligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J Parasitol [Internet]. 2012;42(6):567–73. Available from: http://dx.doi.org/10.1016/j.ijpara.2012.02.011spa
dc.relation.references46. Cowman AF, Tonkin CJ, Tham WH, Duraisingh MT. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host Microbe [Internet]. 2017;22(2):232–45. Available from: http://dx.doi.org/10.1016/j.chom.2017.07.003spa
dc.relation.references47. Satchwell TJ. Erythrocyte invasion receptors for Plasmodium falciparum : new and old. Transfus Med. 2016;26(2):77–88spa
dc.relation.references48. Blackman MJ, Bannister LH. Apical organelles of Apicomplexa: Biology and isolation by subcellular fractionation. Mol Biochem Parasitol. 2001;117(1):11–25.spa
dc.relation.references49. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NWM, Harvey KL, et al. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand 61 Interactions during Plasmodium falciparum Invasion of Erythrocytes. PLoS Pathog [Internet]. 2015;11(2):1–25. Available from: http://dx.doi.org/10.1371/journal.ppat.1004670spa
dc.relation.references50. Thillainayagam M, Ramaiah S. Mosquito, malaria and medicines – A review. Res J Pharm Technol. 2016;9(8):1268–76.spa
dc.relation.references51. Carvajal venus zenith meliza, Martinez CND, Vergara JMA. Memorias © 2012 - 2013. Minist Prot Soc. 2013;(la malaria en colombia):7–46.spa
dc.relation.references52. Padilla JC, Uribe GÁ, Araújo RM, Narváez PC, Valencia SH. Epidemiology and control of malaria in Colombia. Mem Inst Oswaldo Cruz [Internet]. 2011;106 Suppl(Suppl 1):114–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21881765%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4830684spa
dc.relation.references53. Semanal BE. Comportamiento de la notificación malaria 2018. 2019;(2). Available from: https://www.ins.gov.co/buscador-eventos/Informesdeevento/Malaria 2017.pdfspa
dc.relation.references54. Rodrigues CD, Hannus M, Prudêncio M, Martin C, Gonçalves LA, Portugal S, et al. Host Scavenger Receptor SR-BI Plays a Dual Role in the Establishment of Malaria Parasite Liver Infection. Cell Host Microbe [Internet]. 2008 Sep;4(3):271–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S193131280800231spa
dc.relation.references55. Dankwa S, Chaand M, Kanjee U, Jiang RHY, Nobre L V., Goldberg JM, et al. Genetic Evidence for Erythrocyte Receptor Glycophorin B Expression Levels Defining a Dominant Plasmodium. Immunotherapy. 2017;85(10):1–15.spa
dc.relation.references56. Tham WH, Healer J, Cowman AF. Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. Trends Parasitol [Internet]. 2012;28(1):23–30. Available from: http://dx.doi.org/10.1016/j.pt.2011.10.002spa
dc.relation.references57. Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40(3):343–72spa
dc.relation.references58. Delves MJ, Straschil U, Ruecker A, Miguel-Blanco C, Marques S, Dufour AC, et al. Routine in vitro culture of P. Falciparum gametocytes to evaluate novel transmission-blocking interventions. Nat Protoc [Internet]. 2016;11(9):1668–80. Available from: http://dx.doi.org/10.1038/nprot.2016.096spa
dc.relation.references59. Henry NB, Sermé SS, Siciliano G, Sombié S, Diarra A, Sagnon N, et al. Biology of Plasmodium falciparum gametocyte sex ratio and implications in malaria parasite transmission. Malar J [Internet]. 2019;1–8. Available from: https://doi.org/10.1186/s12936-019-2707-0spa
dc.relation.references60. Persson KEM, McCallum FJ, Reiling L, Lister NA, Stubbs J, Cowman AF, et al. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies. J Clin Invest. 2008;118(1):342–51.spa
dc.relation.references61. Ararat-sarria M, Patarroyo MA, Curtidor H, Richard D. Parasite-Related Genetic and Epigenetic Aspects and Host Factors Influencing Plasmodium falciparum Invasion of Erythrocytes. 2019;8(January):1–15.spa
dc.relation.references62. Koch M, Wright KE, Otto O, Herbig M, Salinas ND, Tolia NH, et al. Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion . Proc Natl Acad Sci. 2017;114(16):4225–30.spa
dc.relation.references63. Mayer DCG, Jiang L, Achur RN, Kakizaki I, Gowda DC, Miller LH. The glycophorin C N-linked glycan is a critical component of the ligand for the Plasmodium falciparum erythrocyte receptor BAEBL. Proc Natl Acad Sci [Internet]. 2006 Feb 14;103(7):2358–62. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.0510648103spa
dc.relation.references64. Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy [Internet]. 2017;9(2):131–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28128713%0Ahttp://www.futuremedicine.com/doi/10.2217/imt-2016-0091spa
dc.relation.references65. Zerka A, Olechwier A, Rydzak J, Kaczmarek R, Jaskiewicz E. Baculovirus-expressed Plasmodium reichenowi EBA-140 merozoite ligand is host specific. Parasitol Int [Internet]. 2016 Dec;65(6):708–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1383576916301817spa
dc.relation.references66. Head DJ, Lee ZE, Poole J, Avent ND. Expression of phosphatidylserine (PS) on wild-type and Gerbich variant erythrocytes following glycophorin-C (GPC) ligation. Br J Haematol [Internet]. 2005 Apr;129(1):130–7. Available from: http://doi.wiley.com/10.1111/j.1365-2141.2005.05407.xspa
dc.relation.references67. Lanzillotti R, Coetzer TL. The 10 kDa domain of human erythrocyte protein 4.1 binds the 63 Plasmodium falciparum EBA-181 protein. Malar J [Internet]. 2006 Dec 6;5(1):100. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-5-100spa
dc.relation.references68. Gao X, Gunalan K, Yap SSL, Preiser PR. Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum. Nat Commun [Internet]. 2013;4:1–11. Available from: http://dx.doi.org/10.1038/ncomms3862spa
dc.relation.references69. Tham W-H, Lim NTY, Weiss GE, Lopaticki S, Ansell BRE, Bird M, et al. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes. Blackman MJ, editor. PLOS Pathog [Internet]. 2015 Dec 22;11(12):e1005343. Available from: https://dx.plos.org/10.1371/journal.ppat.1005343spa
dc.relation.references70. Stubbs J. Molecular Mechanism for Switching of P. falciparum Invasion Pathways into Human Erythrocytes. Science (80- ) [Internet]. 2005 Aug 26;309(5739):1384–7. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1115257spa
dc.relation.references71. Aniweh Y, Gao X, Hao P, Meng W, Lai SK, Gunalan K, et al. P. falciparum RH5-Basigin interaction induces changes in the cytoskeleton of the host RBC. Cell Microbiol [Internet]. 2017 Sep;19(9):e12747. Available from: http://doi.wiley.com/10.1111/cmi.12747spa
dc.relation.references72. Stephenson FH. Calculations for Molecular Biology and Biotechnology. Cell. 2003. 302 p.spa
dc.relation.references73. Society for Mucosal Inmunology. PCR: The Polymerase Chain Reaction [Internet]. 2014 [cited 2019 Jun 10]. Available from: http://www.socmucimm.org/pcr-polymerase-chain-reaction/spa
dc.relation.references74. Integrated DNA Technologies. qPCR Application Guide. 4th ed. Belgium; 2015.spa
dc.relation.references75. Bowyer PW, Stewart LB, Aspeling-Jones H, Mensah-Brown HE, Ahouidi AD, Amambua-Ngwa A, et al. Variation in Plasmodium falciparum erythrocyte invasion phenotypes and merozoite ligand gene expression across different populations in areas of malaria endemicity. Infect Immun. 2015;83(6):2575–82.spa
dc.relation.references76. Valmaseda A, Bassat Q, Aide P, Cisteró P, Jiménez A, Casellas A, et al. Host age and expression of genes involved in red blood cell invasion in Plasmodium falciparum field isolates. Sci Rep. 2017;7(1):1–9.spa
dc.relation.references77. Cortés A, Carret C, Kaneko O, Yim Lim BYS, Ivens A, Holder AA. Epigenetic Silencing of Plasmodium falciparum Genes Linked to Erythrocyte Invasion. PLoS Pathog [Internet]. 64 2007;3(8):e107. Available from: http://dx.plos.org/10.1371/journal.ppat.0030107spa
dc.relation.references78. Viewi O, Hadley TI, Klotz FW, Miller LH. Invasion of erythrocytes by mal1\ria parasites: a cellular and molecular ovef�����viewi. 1986;451–77.spa
dc.relation.references79. Bei AK, Duraisingh MT. Measuring Plasmodium falciparum Erythrocyte Invasion Phenotypes Using Flow Cytometry. In 2015. p. 167–86. Available from: http://link.springer.com/10.1007/978-1-4939-2815-6_14spa
dc.relation.references80. Theron M, Hesketh RL, Subramanian S, Rayner JC. An adaptable two-color flow cytometric assay to quantitate the invasion of erythrocytes by Plasmodium falciparum parasites. Cytom Part A [Internet]. 2010 Nov;77A(11):1067–74. Available from: http://doi.wiley.com/10.1002/cyto.a.20972spa
dc.relation.references81. Hayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, et al. Erythrocyte Binding Protein PfRH5 Polymorphisms Determine Species-Specific Pathways of Plasmodium falciparum Invasion. Cell Host Microbe [Internet]. 2008;4(1):40–51. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677973/spa
dc.relation.references82. Mu J, Seydel KB, Bates A, Su X. Recent Progress in Functional Genomic Research in Plasmodium falcipa- rum. 2010;(301):279–86.spa
dc.relation.references83. Trager W, B JJ. Human malaria parasites in Continuous culture. 1976.spa
dc.relation.references84. BEI Resources Repository, NIAID, NIH: Plasmodium falciparum, Strain 3D7, MRA-102, contributed by Daniel J. Carucci. [Internet]. Available from: https://www.beiresources.org/Catalog/BEIParasiticProtozoa/MRA-102.aspxspa
dc.relation.references85. Radfar A, Méndez D, Moneriz C, Linares M, Marín-García P, Puyet A, et al. Synchronous culture of Plasmodium falciparum at high parasitemia levels. Nat Protoc. 2009;4(12):1899–915.spa
dc.relation.references86. Bioline. ISOLATE II RNA Plan Kit [Internet]. 2018. Available from: https://www.bioline.com/au/downloads/dl/file/id/1204/isolate_ii_rna_plant_kit_protocol.pdfspa
dc.relation.references87. Invitrogen. SuperScript TM III Reverse Transcriptase. Thermo Fisher. 2004.spa
dc.relation.references88. Regalado A. Banco Nacional De Adn Carlos Iii. 2005;6. Available from: http://www.bancoadn.org/docs/programa-control-calidad-muestras.pdfspa
dc.relation.references89. Nery S, Deans A, Mosobo M, Marsh K, Rowe JA, Conway DJ. Expression of Plasmodium 65 falciparum genes involved in erythrocyte invasion varies among isolates cultured directly from patients. Mol Biochem Parasitol. 2006;149(2):208–15.spa
dc.relation.references90. Promega. GoTaq ® Probe qPCR Master Mix. 2012.spa
dc.relation.references91. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature [Internet]. 2002 Oct;419(6906):498–511. Available from: http://www.nature.com/articles/nature01097spa
dc.relation.references92. Gomez-escobar N, Amambua-ngwa A, Walther M, Okebe J, Ebonyi A, Conway DJ. Erythrocyte Invasion and Merozoite Ligand Gene Expression in Severe and Mild Plasmodium falciparum Malaria. 2010;201:444–52spa
dc.relation.references93. Cowman AF, Crabb BS. Invasion of red blood cells by malaria parasites. Vol. 124, Cell. 2006. p. 755–66.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembMalaria - Epidemiología
dc.subject.lembVacuna contra la malaria
dc.subject.lembPaludismo
dc.subject.proposalMalariaspa
dc.subject.proposalPlasmodium falciparumspa
dc.subject.proposalLigandos de invasiónspa
dc.subject.proposalPfRHsspa
dc.subject.proposalPfEBAsspa
dc.subject.proposalRT-qPCRspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019
Except where otherwise noted, this item's license is described as Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019