Mostrar el registro sencillo del ítem

dc.contributor.advisorRomero Calderón, Ibeth Cristina
dc.contributor.authorFarfán Gómez, Laura Nicole
dc.contributor.authorMolina Serna, Karen Tatiana
dc.date.accessioned2021-06-28T19:45:44Z
dc.date.available2020-03
dc.date.available2021-06-28T19:45:44Z
dc.date.issued2020-03
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/301
dc.description.abstractPseudomonas aeruginosa, es una bacteria que causa infecciones asociadas a la atención en salud y representa un problema de salud pública, por su capacidad de generar resistencia a los medicamentos usados en el tratamiento convencional, es por esto que se requiere del estudio de nuevos blancos terapéuticos para el desarrollo de nuevas terapias. En este sentido, la enzima Cisteína Sintasa (CS) reviste gran interés debido a que no se encuentra en el humano, cumple un papel importante en la supervivencia de algunos microorganismos frente al estrés oxidativo y ha sido asociada a fenotipos de resistencia a medicamentos. En el presente proyecto, se caracterizó in silico la enzima CS en P. aeruginosa; usando herramientas bioinformáticas se identificaron 3 posibles isoformas de la enzima, de las cuales sólo dos (CysA y CysB) presentaron todos los dominios característicos de la familia de proteínas CS; los modelos tridimensionales de las 3 isoformas predichos mediante I-TASSER mostraron una alta calidad y confiabilidad para poder ser usados en estudios posteriores. Por otro lado, los análisis filogenéticos y de comparación de secuencias aminoacídicas permitieron establecer que las enzimas CS en esta bacteria difieren significativamente con la enzima ortóloga más cercana en el humano la Cistationina Beta Sintasa (CBS). Los resultados obtenidos en este estudio servirán de base para la validación funcional de CS como posible blanco terapéutico en P. aeruginosa y la búsqueda de inhibidores específicos contra esta enzima que permitan desarrollar una terapia alternativa y selectiva contra las infecciones producidas por esa bacteria.spa
dc.description.abstractPseudomonas aeruginosa, is a bacterium that causes infections associated with health care and represents a public health problem, due to its ability to generate resistance to drugs used in conventional treatment, which is why it is necessary to study new therapeutic targets for the development of new therapies. In this sense, the enzyme Cysteine Synthase (CS) is of great interest because it is not found in humans, it plays an important role in the survival of some microorganisms against oxidative stress and has been associated with phenotypes of drug resistance. In the present project, the CS enzyme in P. aeruginosa was characterized in silica; Using bioinformatic tools, 3 possible isoforms of the enzyme were identified, of which only two (CysA and CysB), all the characteristic domains of the CS protein family; The three-dimensional models of the 3 isoforms predicted using I-TASSER protocols have a high quality and reliability to be used in subsequent studies. On the other hand, phylogenetic analysis and comparison of amino acid sequences allowed to establish the CS enzymes in this bacterium differ significantly with the closest orthologous enzyme in human cystathionine beta synthase (CBS). The results obtained in this study will serve as a basis for the functional validation of CS as a possible therapeutic target in P. aeruginosa and the search for specific inhibitors against this enzyme that develops an alternative and selective therapy against infections caused by this bacterium.eng
dc.description.tableofcontentsResumen 13 Introducción 15 1. Objetivos 17 1.1 Objetivo general 1.2 Objetivos específicos 2. Antecedentes 18 3. Marco teórico 21 4. Diseño metodológico 32 5. Resultados 36 6. Discusión 53 7. Conclusiones 56 8. Referencias bibliográficas 57spa
dc.format.extent92p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados-Universidad Colegio Mayor de Cundinamarca, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleCaracterización molecular y bioquímica de la enzima Cisteína Sintasa en la bacteria Pseudomonas aeruginosa mediante análisis in silico, como posible blanco terapéutico en este patógenospa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.C.spa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesGellatly S. & Hancock R. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease. (2013). 67: 159–173.spa
dc.relation.referencesVilla M., Cortés A., Leal L., Meneses A. & Meléndez P. Resistance to antibiotics in Pseudomonas aeruginosa in Colombian hospitals. Rev. chil. infectol. (2013). 30 (6): 605-610.spa
dc.relation.referencesRuiz P., & Cantón R. Epidemiology of antibiotic resistance in Pseudomonas aeruginosa. Implications for empiric and definitive therapy. Rev Esp Quimioter. (2017). 30 (Suppl. 1): 8-12.spa
dc.relation.referencesDíaz A., Vivas R., Puerta L., Ahumedo M., Arévalo L., Cabrales R & Herrera A. Biofilms like expression of quorum sensing mechanism: A revision. Av Periodon Implantol. (2011). Vol 23, 3: 195-201.spa
dc.relation.referencesHernández A., Yagüe G., García E., Simón M., Moreno L., Canteras M., & Gómez, J. Infecciones nosocomiales por Pseudomonas aeruginosa multiresistente incluido carbapenémicos: factores predictivos y pronósticos. Estudio prospectivo 2016-2017. Rev Esp Quimioter. (2018) ; 31 (2): 123-130.spa
dc.relation.referencesZowalaty M., Thani A., Webster T., Zowalaty A., Schweizer H., Nasrallah G., Marei H., & Ashour H. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. (2015). 10 (10), 1683– 1706spa
dc.relation.referencesCenters for Disease Control and Prevention. Pseudomonas aeruginosa in Healthcare Settings. [Internet]. [Revisado marzo 2019]. Available from: https://www.cdc.gov/hai/organisms/pseudomonas.htmlspa
dc.relation.referencesMaimone S. PSEUDOMONAS AERUGINOSA. COdeINEP control de infecciones y epidemiologia. [Internet] 2004 [Revisado en noviembre 2019]. Available from: https://codeinep.org/wp-content/uploads/2017/02/PSEUDOMONAS-AERUGINOSA.pdfspa
dc.relation.referencesPeñaloza H., Noguera L., Riedel C & Bueno S. Expanding the Current Knowledge About the Role of Interleukin-10 to Major Concerning Bacteria. Front Microbiol. (2018); 9 : 2047.spa
dc.relation.referencesChristophe B., Agnès R & Jean-Marc G. Escherichia coli biofilms. Curr Top Microbiol Immunol. (2008) 322 : 249–289.spa
dc.relation.referencesSturgill G., Toutain C., Komperda J., O’Toole G & Rather P. Role of CysE in production of an extracellular signaling molecule in Providencia stuartii and Escherichia coli: loss of CysE enhances biofilm formation in Escherichia coli. J Bacteriol. (2004) 186 : 7610–7617.spa
dc.relation.referencesSingh P., Brooks J., Ray V., Mandel M & Visick K. CysK plays a role in biofilm formation and colonization by Vibrio fischeri. Appl Environ Microbiol. (2015) ; 81 : 5223–5234.spa
dc.relation.referencesDiner E., Beck C., Webb J., Low D & Hayes C. Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI). (2012). Genes Dev 26, 515spa
dc.relation.referencesKaundal S., Uttam M & Thakur K. Dual Role of a Biosynthetic Enzyme, CysK, in Contact Dependent Growth Inhibition in Bacteria. PLoS ONE (2016). 11 (7) : e0159844.spa
dc.relation.referencesTurnbull A & Surette MG. L-Cysteine is required for induced antibiotic resistance in actively swarming Salmonella enterica serovar Typhimurium. Microbiology. (2008) ; 154 : 3410–3419.spa
dc.relation.referencesBecker MA., Kredich NM & Tomkins GM.The purification and characterization of Oacetylserine sulfhydrylase-A from Salmonella typhimurium. J. Biol Chem. (1969). 10 ; 244 (9) : 2418-27.spa
dc.relation.referencesTurnbull A & Surette MG. Cysteine biosynthesis, oxidative stress and antibiotic resistance in Salmonella typhimurium. Res Microbiol. (2010) ; 161 : 643–650.spa
dc.relation.referencesBecker MA., Kredich NM & Tomkins GM.The purification and characterization of Oacetylserine sulfhydrylase-A from Salmonella typhimurium. J. Biol Chem. (1969). 10 ; 244 (9) : 2418-27.spa
dc.relation.referencesÅgren D., Schnell R & Schneider. The C-terminal of CysM from Mycobacterium tuberculosis protects the aminoacrylate intermediate and is involved in sulfur donor selectivity. FEBS Letters 583 (2009) 330–336.spa
dc.relation.referencesBrunner K., Maric S., Reshma R., Almqvist H., Seashore-Ludlow B., Gustavsson A., Poyraz Ö., Yogeeswari P., Lundbäck T., Vallin M., Sriram D., Schnell R & Schneider G. Inhibitors of the Cysteine Synthase CysM with Antibacterial Potency against Dormant Mycobacterium tuberculosis. J Med Chem. (2016). 59 (14) : 6848-5.spa
dc.relation.referencesJames K., Lithgow., Emma J., Hayhurst., Gerald Cohen., Aharonowitz Y & Simon J. Role of a Cysteine Synthase in Staphylococcus aureus. J Bacteriol. (2004) 186 (6) : 1579-90.spa
dc.relation.referencesCampanini B., Pieroni M., Raboni S., Bettati S., Benoni R., Pecchini C., Costantino G & Mozzarelli A. Inhibitors of the sulfur assimilation pathway in bacterial pathogens as enhancers of antibiotic therapy. Curr Med Chem. (2015) ; 22 : 187–213.spa
dc.relation.referencesRomero I., Téllez J., Yamanaka L.E., Steindel M., Romanha A.J., & Grisard E.C. Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasites & vectors. (2014). : 7, 197.spa
dc.relation.referencesRomero I., Téllez J., Romanha A.J., Steindel M., & Grisard E.C. Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrobial agents and chemotherapy. (2015). 59 (8) : 4770–4781.spa
dc.relation.referencesTéllez J., Romero I., Soares M., Steindel M & Romanha A. Knockdown of Host Antioxidant Defense Genes Enhances the Effect of Glucantime on Intracellular Leishmania braziliensis in Human Macrophages. Antimicrob Agents Chemother. (2017) 27 ; 61 (7).spa
dc.relation.referencesGillin, F & Diamond S. Entamoeba histolytica and Giardia lamblia: effects of cysteine and oxygen tension on trophozoite attachment to glass and survival in culture media. Exp. Parasitol. (1981) 52, 9–17.spa
dc.relation.referencesFahey R., Newton G., Arrick B., Overdank-Bogart T & Aley S. Entamoeba histolytica: a eukaryote without glutathione metabolism. Science. (1984). 224, 70–72.spa
dc.relation.referencesNagpal I., Raj I., Subbarao N & Gourinath S. Virtual screening, identification and in vitro testing of novel inhibitors of O-acetyl-L- serine sulfhydrylase of Entamoeba histolytica. (2012). PLoS ONE 7:e30305.spa
dc.relation.referencesA. Yagci. Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clin Microbiol Infect (2010) ; 16: 1770–1775spa
dc.relation.referencesTanya Strateva & Ivan Mitov. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann Microbiol (2011) 61:717–732spa
dc.relation.referencesCabrera Y. Adaptación de Pseudomonas aeruginosa a la infección crónica en fibrosis quística: identificación de cepas con peptidoglicano de reducida capacidad inflamatoria y/o resistencia a la lisozima. Universitat de les illes balears. (2015).spa
dc.relation.referencesCallicó A., Cedré B., Sifontes S., Torres V., Pino Y., Callís A & Sara C. Caracterización fenotípica y serológica de aislamientos clínicos de Pseudomonas aeruginosa. VacciMonitor 1 Año 13 No. 3spa
dc.relation.referencesTanya S & Ivan M. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann Microbiol (2011) 61:717–732.spa
dc.relation.referencesMoradali M., Ghods S & Bernd H. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. (2017). 15 ; 7 : 39spa
dc.relation.referencesGarcia M., Morelloc E., Garnierd J., Barraultd C., Garniera M., Burucoaa C., Lecrona J., SiTahar M., Bernardd F & Charles Bodet. Pseudomonas aeruginosa flagellum is critical for invasion, cutaneous persistence and induction of inflammatory response of skin epidermis. (2018). VOL. 9, NO. 1, 1163–1175.spa
dc.relation.referencesWHO. Report on the burden of endemic health care-associated infection worldwide. Ginebra. (2011). [Internet]. Avalaible from: https://apps.who.int/iris/bitstream/handle/10665/80135/9789241501507_eng.pdfspa
dc.relation.referencesParkins M., Somayaji R & Waters V. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev. (2018). 31:e00019-18spa
dc.relation.referencesOssa A., Echeverri L., Santos Z., García M., Agudelo Y., Ramírez F & Ospina S. Factores de riesgo para infección por Pseudomonas aeruginosa multi-resistente en un hospital de alta complejidad. Rev Chilena Infectol (2014). 31 (4): 393-399.spa
dc.relation.referencesRestrepo J., Macias I & Ochoa F. Factores de riesgo asociados a infecciones por bacterias multirresistentes derivadas de la atención en salud en una institución hospitalaria de la ciudad de Medellín 2011-2014. Infectio. (2016) ; 20 (2) : 77-83spa
dc.relation.referencesLarry M., Bush M & Perez M. Infecciones por Pseudomonas y patógenos relacionados. Last full review/revision. (2018). [Internet]. [Consultado diciembre 2019]. Available from: https://www.msdmanuals.com/es/professional/enfermedades-infecciosas/bacilosgramnegativos/infecciones-por-pseudomonas-y-pat%C3%B3genos-relacionadosspa
dc.relation.referencesDias V., Resende J., Bastos A., Bastos L., Bastos V. Epidemiological, Physiological, and Molecular Characteristics of a Brazilian Collection of Carbapenem-Resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Microb Drug Resist. (2017) 23 (7) : 852-863.spa
dc.relation.referencesJason C., Gallagher J & Satlin. Ceftolozane-Tazobactam for the Treatment of MultidrugResistant Pseudomonas aeruginosa Infections: A Multicenter Study. Ceftolozane-Tazobactam for MDR Pseudomonas. Open Forum Infectious Diseases. (2018).spa
dc.relation.referencesMontravers P., Harpan A & Elise Guivarc. Current and Future Considerations for the Treatment of Hospital-Acquired Pneumonia. Adv Ther. (2016). 33 : 151 – 166.spa
dc.relation.referencesBodia M & Garnacho J. Pseudomonas aeruginosa: tratamiento combinado frente a monoterapia. Med Intensiva. (2007). 31 (2) : 83 - 7.spa
dc.relation.referencesPintado V. Fármacos antiguos y nuevos en el tratamiento de la infección por bacterias multirresistentes. Rev Esp Quimioter (2016) 29 (Suppl. 1) : 39 - 42.spa
dc.relation.referencesRighi E., Peri A., Harris P., Wailan A., Liborio M., Lane S & Paterson D. Global prevalence of carbapenem resistance in neutropenic patients and association with mortality and carbapenem use: systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy. (2017). Volume 72, Issue 3 : 668–677.spa
dc.relation.referencesHeba Y., Al Dawodeyah., Obeidat N., Qatouseh L & Shehabi A. Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection. GERMS. (2018). 8 (1) : 31 - 40.spa
dc.relation.referencesElena B., Fuente B., Núñez E & W.Hancock. Pseudomonas aeruginosa: all roads lead to resistance. Trends in Microbiology. (2011). Vol 19, Issue 8 : 419-426.spa
dc.relation.referencesPang Z., Raudonis R., Glick B., Lin T & Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. (2019) 37 (1) : 177 - 192.spa
dc.relation.referencesDrenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect. (2003) 5 (13) : 1213 - 9.spa
dc.relation.referencesSandoval M. & Aldana. Adaptive resistance to antibiotics in bacteria: a systems biology perspective. WIREs Syst Biol Med. (2016) 8 : 253 – 267.spa
dc.relation.referencesBeinert, H & Kiley P. Fe-S proteins in sensing and regulatory functions. Curr. Opin. Chem. Biol (1999). 3 : 152 – 157.spa
dc.relation.referencesCortes J., Cuervo S., Urdaneta A., Potdevin G., Arroyo P & Bermúdez D. Identifying and controlling a multiresistant Pseudomonas aeruginosa outbreak in a Latin-American cancer centre and its associated risk factors. Braz J Infect Dis. (2009) 13 (2) : 99 - 103.spa
dc.relation.referencesDewick P. Medicinal natural products: a biosynthetic approach. Editorial WILEY. Ed. 2 [Internet]. [Consultado noviembre 2019]. Available from: https://books.google.com.co/books?hl=es&lr=&id=A4zptjOJfKQC&oi=fnd&pg=PA1&dq=Medi cinal+natural+products:+a+biosynthetic+approach&ots=whkrLXOIYg&sig=U5As6CERLHXFL tNuec7QTZ6zj24#v=onepage&q=Medicinal%20natural%20products%3A%20a%20biosynthetic %20approach&f=falsespa
dc.relation.referencesMukai T., Crnkovic A., Umehara T., Ivanova NN., Kyrpides NC & Söll D. RNAdependent cysteine biosynthesis in bacteria and archaea. mBio. (2017). 8 : e00561 - 17.spa
dc.relation.referencesGuédon E & Martin I. Cysteine Metabolism and Its Regulation in Bacteria. In: Wendisch V.F. (eds) Amino Acid Biosynthesis - Pathways, Regulation and Metabolic Engineering. (2006) Microbiology Monographs, vol 5. Springer, Berlin, Heidelberg.spa
dc.relation.referencesOchoa R., Flórez A., Muskus C. DETECCIÓN IN SILICO DE SEGUNDOS USOS DE MEDICAMENTOS CON POTENCIAL ACCIÓN LEISHMANICIDA. Rev. ing. biomed. (2011). vol.5 no.10spa
dc.relation.referencesSchechner V., Nobre V., Kaye K., Leshno M., Giladi M & Rohner P. Gram negative bacteremia upon hospital admission: when should Pseudomonas aeruginosa be suspected?. Clin Infect Dis. (2009) ; 48 : 580 – 586.spa
dc.relation.referencesArtimo P, Jonnalagedda M & Arnold K. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. (2012) 40 (Web Server issue) : 597 – 603.spa
dc.relation.referencesEl-Gebali S, Mistry J & Bateman A. The Pfam protein families database in 2019. Nucleic Acids Res. (2019) 47 : 427 – 432.spa
dc.relation.referencesKumar S, Stecher G, Li M, Knyaz C & Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. (2018) 35 (6) : 1547 – 1549.spa
dc.relation.referencesVasfi M., Mehdi M., Mohammad R., Mohammad M., Dadashpour D., Navid & Alamian S. Sequencing and In Silico Multi-aspect Analysis of S1 Glycoprotein in 793/B Serotype of Infectious Bronchitis Virus Isolated From Iran in 2003 and 2011. Archives of Razi Institute. (2018) 73. 183-198.spa
dc.relation.referencesYang J, Yan R, Roy A, Xu D, Poisson J & Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. (2015) 12 (1) : 7–8.spa
dc.relation.referencesMarkus W., Manfred J & Sippl. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Research. (2007). Volume 35, Issue 2 : 407 – 410.spa
dc.relation.referencesKwofie S., Enninful K & Yussif J. Molecular Informatics Studies of the Iron-Dependent Regulator (ideR) Reveal Potential Novel Anti-Mycobacterium ulcerans Natural Product-Derived Compounds. Molecules. (2019) 24 (12) : 2299.spa
dc.relation.referencesBhattacharya M., Hota A & Kar A. In silico structural and functional modelling of Antifreeze protein (AFP) sequences of Ocean pout (Zoarces americanus, Bloch & Schneider 1801). J Genet Eng Biotechnol. (2018) 16 (2) : 721–730.spa
dc.relation.referencesTing W & Thomas S. Three-stage Assembly of the Cysteine Synthase Complex from Escherichia coli. JOURNAL OF BIOLOGICAL CHEMISTRY. (2012). Vol. 287 N. 6, pp. 4360 –4367.spa
dc.relation.referencesTing W & Thomas S. Three-stage Assembly of the Cysteine Synthase Complex from Escherichia coli. JOURNAL OF BIOLOGICAL CHEMISTRY. (2012). Vol. 287 N. 6, pp. 4360 –4367.spa
dc.relation.referencesEnea S., Barbara C., Stefano B., Samanta R., Steven L., Paul F. & Andrea M. A Two-step Process Controls the Formation of the Bienzyme Cysteine Synthase Complex. THE JOURNAL OF BIOLOGICAL CHEMISTRY (2010) Vol. 285 No. 17 pp. 12813–1282.spa
dc.relation.referencesOlga S., Olivier P., Jean-Yves C., Antoine D., Tarek M & Isabelle Martin-V. CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation. Molecular Microbiology (2009). 73 (2): 194– 211spa
dc.relation.referencesKatharina B., Selma M., Rudraraju S., Helena A., Brinton S., AnnaLena G., Ömer P., Perumal Y., Thomas L., Michaela V., Dharmarajan S., Robert S & Gunter S. Inhibitors of the Cysteine Synthase CysM with Antibacterial Potency against Dormant Mycobacterium tuberculosis. J. Med. Chem. (2016). 59 : 6848−6859.spa
dc.relation.referencesSatendra S., Gaurav S., Rohit F., Atul K., Budhayash G & Sunil K. Molecular Dynamic Simulation and Inhibitor Prediction of Cysteine Synthase Structured Model as a Potential Drug Target for Trichomoniasis. BioMed Research International. (2013). 15pg.spa
dc.relation.referencesRoberto B., Omar D., Gianluca P., Christopher S., Nina F., Andrea M., Stefano B & Barbara C. Modulation of E. coli serine acetyltransferase catalytic activity in the cysteine synthase complex. Research Letter. (2017).spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembPatógenos
dc.subject.lembOrtólogas
dc.subject.lembMultirresistentes
dc.subject.proposalPseudomonas aeruginosaspa
dc.subject.proposalCisteína sintasaspa
dc.subject.proposalEnzimaspa
dc.subject.proposalBlancos de acciónspa
dc.subject.proposalTerapia selectivaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_16ecspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados-Universidad Colegio Mayor de Cundinamarca, 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados-Universidad Colegio Mayor de Cundinamarca, 2020