Mostrar el registro sencillo del ítem
Genes bacterianos involucrados en degradación de Xenobióticos y defensa contra Patógenos en diferentes Microbiomas: una revisión documental.
dc.contributor.advisor | Posada Buitrago, Martha Lucía | |
dc.contributor.advisor | Cuervo Alarcón, Laura Carolina | |
dc.contributor.author | Rincón Aguilar, Lady Vivianne | |
dc.contributor.author | Rosas Ariza, Liseth | |
dc.date.accessioned | 2021-09-10T21:00:39Z | |
dc.date.available | 2021-09-10T21:00:39Z | |
dc.date.issued | 2021-05-03 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/2837 | |
dc.description.abstract | El uso inadecuado y excesivo de fertilizantes, insecticidas y demás sustancias empleadas para “mejorar” la calidad de los cultivos y controlar diferentes plagas, han ocasionado pérdidas no solo a nivel económico sino también medioambiental e incluso para la salud humana, ya que las alternativas actuales para el mantenimiento de los suelos y el control de insectos plaga han sido insuficientes. Por ello, es necesario la búsqueda de nuevas alternativas de control biológico ambientalmente sostenibles. El objetivo de este trabajo fue realizar una investigación sobre los genes bacterianos potencialmente involucrados en degradación de xenobióticos y en defensa contra patógenos microbianos, mediante una revisión documental, donde se incluyó literatura científica, bases de datos bibliográficas, entre otras fuentes, con información de entidades nacionales e internacionales sobre el tema objeto de estudio. Se encontró que de un total de 118 genes bacterianos provenientes del microbioma de suelo, plantas e intestino de insectos, y pertenecientes a los filos Proteobacteria y Firmicutes principalmente, 30 tienen la capacidad de degradar xenobióticos y 88 confieren protección contra diferentes patógenos microbianos. Finalmente, se resalta la importancia de explorar nuevas alternativas que contribuyan al desarrollo de un control biológico ambientalmente sostenible. | spa |
dc.description.abstract | The inappropriate and excessive use of fertilizers, insecticides and other substances used to "improve" the quality of crops and control different pests, have caused losses not only economically but also environmentally and even for human health, since current alternatives for the maintenance of the soils and the control of pest insects have been insufficient. Therefore, it is necessary to search for new environmentally sustainable biological control alternatives. The objective of this work was to do an investigation on the bacterial genes potentially involved in the degradation of xenobiotics and in defense against microbial pathogens, through a documentary review, which included scientific literature, bibliographic databases, among other sources, with information on entities national and international on the subject under study. It was find that of a total of 118 bacterial genes from the microbiome of soil, plants and insect intestines, and mainly belonging to the phyla Proteobacteria and Firmicutes, 30 have the ability to degrade xenobiotics and 88 confer protection against different microbial pathogens. Finally, the importance of exploring new alternatives that contribute to the development of an environmentally sustainable biological control is highlighted. | eng |
dc.description.tableofcontents | RESUMEN 14 SUMMARY 15 1. Introducción 16 2. Objetivos 19 2.1. Objetivo general 19 2.2. Objetivos específicos 19 3. Antecedentes (estado del arte) 20 3.1. Bacterias asociadas a plantas 20 3.2. Bacterias asociadas al suelo 21 3.3. Bacterias asociadas a insectos 21 4. Marco teórico 25 4.1. Microbioma 25 4.1.1. Microbioma de las plantas 25 4.1.2. Microbioma del suelo 26 4.1.3. Microbioma del insecto 26 4.1.4. Factores que afectan a la diversidad microbiana 26 4.2. Degradación de xenobióticos 27 4.3. Protección contra patógenos 28 4.3.1. Sideróforos 28 4.3.2. Bacteriocinas 29 4.3.3. Policétidos 29 4.3.4. Sistemas de secreción 29 5. Diseño Metodológico 30 5.1. Tipo de investigación 30 5.2. Universo, población y muestra 30 5.2.1. Universo 30 5.2.2. Población 30 5.2.3. Muestra 30 6. Metodología 31 6.1. Revisión bibliográfica 31 6.2. Selección de material bibliográfico 31 6.3. Elaboración de la estructura del documento 32 7. Resultados 32 7.1. Revisión bibliográfica 32 7.2. Selección de material bibliográfico 32 7.3. Elaboración de la estructura del documento 35 7.3.1. Genes bacterianos encontrados con potencial para degradar xenobióticos 35 7.3.2. Genes bacterianos encontrados con potencial para proteger contra patógenos microbianos 39 7.3.3. Relación entre la taxonomía bacteriana y su potencial para degradar xenobióticos y proteger contra patógenos microbianos 42 7.3.4. Relación del filo taxonómico con los genes bacterianos potencialmente involucrados en la degradación de xenobióticos 44 7.3.5. Relación del filo taxonómico con los genes bacterianos potencialmente involucrados en la protección contra patógenos microbianos 45 7.3.6. Genes bacterianos con potencial para degradar ciertos tipos de xenobióticos 45 7.3.7. Genes bacterianos con potencial para producir compuestos involucrados en la protección contra patógenos bacterianos y fúngicos 46 7.3.8. Procedencia de las bacterias potencialmente involucradas en la degradación de xenobióticos y la defensa contra patógenos microbianos 48 8. Discusión 50 8.1. La taxonomía bacteriana y su potencial para degradar xenobióticos y proteger contra patógenos microbianos 50 8.2. Relación del filo taxonómico con los genes bacterianos potencialmente involucrados en la degradación de xenobióticos 50 8.3. Genes bacterianos con potencial para degradar ciertos tipos de xenobióticos 51 8.4. Genes bacterianos con potencial para producir compuestos involucrados en la protección contra patógenos bacterianos y fúngicos 51 8.5. Procedencia de las bacterias potencialmente involucradas en la degradación de xenobióticos y la defensa contra patógenos microbianos 52 9. Conclusiones 54 10. Referencias 55 Anexos 80 | spa |
dc.format.extent | 105p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Genes bacterianos involucrados en degradación de Xenobióticos y defensa contra Patógenos en diferentes Microbiomas: una revisión documental. | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá D.C | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | OMS. 7 millones de muertes cada año debidas a la contaminación atmosférica. [Internet] [cita2018;47(D1), D506–D515. [Internet] [cited 24 sep 2020]. Available in: do 20 mar 2021]. Disponible en: https://www.who.int/mediacentre/news/releases/2014/air-pollution/es/ | spa |
dc.relation.references | ONU. Objetivo 3—Los Objetivos de Desarrollo Sostenible y un 2030 más saludable. [Internet] [citado 20 mar 2021] Disponible en: https://www.un.org/es/chronicle/article/objetivo-3-los-objetivos-de-desarrollo- sostenible-y-un-2030-mas-saludable | spa |
dc.relation.references | Madridmasd. Contaminación del suelo y salud pública (Global Soil Forum). [Internet] [citado 20 mar 2021] Disponible en: http://www.madrimasd.org/blogs/universo/2015/02/20/146182 | spa |
dc.relation.references | Faure D, Simon, J. C., & Heulin, T. (2018). Holobiont: a conceptual framework to explore the eco‐ evolutionary and functional implications of host–microbiota interactions in all ecosystems. 218(4)1321- 1324https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.15199 | spa |
dc.relation.references | Leanne Edermaniger, What’s The Difference Between Microbiome And Microbiota? Atlas Biomed Blog, 2020. https://atlasbiomed.com/blog/whats-the-difference- between-microbiome-and-microbiota/ | spa |
dc.relation.references | Doty, S. L. Functional Importance of the Plant Microbiome [Internet]. Springer. link. Spring. 2017. Chapter 1, Functional importance of the plant endophytic microbiome: implications for agriculture, forestry, and bioenergy; [cited 2021 feb 4 ]; p.1-5). Available in: https://link.springer.com/chapter/10.1007/978-3-319-65897-1_1 | spa |
dc.relation.references | Berendsen, R. L., Pieterse, C. M., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in plant science, 17(8), 478-486. https://www.sciencedirect.com/science/article/abs/pii/S1360138512000799 | spa |
dc.relation.references | Rangaswamy, V., & Venkateswarlu, K. (1992). Degradation of selected insecticides by bacteria isolated from soil. Bulletin of environmental contamination and toxicology, 49(6), 797-804. https://link.springer.com/article/10.1007%2FBF00203150 | spa |
dc.relation.references | Díaz, J. C. Q. (2011). Revisión: degradación de plaguicidas mediante hongos de la pudrición blanca de la madera. Revista Facultad Nacional de Agronomía-Medellín, 64(1), 5867-5882. http://www.scielo.org.co/pdf/rfnam/v64n1/a12v64n01.pdf | spa |
dc.relation.references | Douglas A. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera - ProQuest. Annu. Rev. Entomol [Internet]. 1998[cited 9 apr 2020]; 43(1):17-37. Available in: https://www.annualreviews.org/doi/pdf/10.1146/annurev.ento.43.1.17 | spa |
dc.relation.references | Gracy, R.G., Malathi, V.M., Jalali, S.K. et al. Variation in larval gut bacteria between insecticide-resistant and -susceptible populations of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Phytoparasitica 44, 477–490 (2016). [Internet]. [cited 9 apr 2020]. Available in: https://link.springer.com/article/10.1007/s12600-016-0547- 9#citeas | spa |
dc.relation.references | Izquierdo Rodas, J. J. (2017). Contaminación de los suelos agrícolas provocados por el uso de los agroquímicos en la parroquia San Joaquín (Bachelor's thesis).https://dspace.ups.edu.ec/bitstream/123456789/14712/1/UPS-CT007228.pdf | spa |
dc.relation.references | Dillon R, Vennard C, Buckling A, Charnley A. Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett [Internet]. 2005 [cited 20 mar 2020]; 8(12): 1291-8. Available in: https://www.researchgate.net/publication/227680457_Diversity_of_locust_gut_bacter ia_protects_against_pathogen_invasion | spa |
dc.relation.references | Moreno MG. Sistema Inmune Insectos [Internet]. Ciencia y desarrollo; 2020[consultado el 4 de mar de 2021]. Disponible en: https://www.cyd.conacyt.gob.mx/archivo/239/Articulos/SistemaIectinophora gossypiellanmuneInsectos/SistemaInmuneInsectos2.html | spa |
dc.relation.references | Upct. Poster microbiología del suelo. [Internet] [citado 20 mar 2021]. Disponible en: https://www.upct.es/gestionserv/inter/web_servsimip_fich/doc_secciones/280posterm icrobiologa-suelo.pdf | spa |
dc.relation.references | Azambuja P, Feder D, Garcia ES. Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol [Internet]. 2004[cited 20 mar 2020];107(1-2):89-96. Available in: https://www.ncbi.nlm.nih.gov/pubmed/15208042 | spa |
dc.relation.references | Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. PNAS [Internet]. 2011[cited 26 mar 2020];108(48):19288-92 . Available in: https://www.ncbi.nlm.nih.gov/pubmed/22084077 | spa |
dc.relation.references | Dillon R, Dillon V. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 2004;49:71-92. [Internet] [cited 26 mar 2020]. Available in: https://www.ncbi.nlm.nih.gov/pubmed/14651457 | spa |
dc.relation.references | Vega O. Problemas ambientales y de salud derivados del uso de fertilizantes nitrogenados [trabajo de grado Tesis Doctoral].Madrid: Universidad complutense; 2017. | spa |
dc.relation.references | Clark, J.K., J.G. Scott, F. Campos y J.R. Bloomquist (1995). Resistance to avermectins: extent, mechanisms, and management implications. Annual Review Entomology 40: 1-30. Available in: https://pubmed.ncbi.nlm.nih.gov/7810984/ | spa |
dc.relation.references | Villanueva D, Saldamando CI. Tecia solanivora , Povolny (Lepidoptera: Gelechiidae): una revisión sobre su origen, dispersión y estrategias de control biológico . Ing Cienc [Internet]. 2013 [citado 19 mar 2020 ];9(18):197-214. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794- 91652013000200012 | spa |
dc.relation.references | Econex. Tecia solanivora: Polilla Guatemalteca de la Papa BIOCONTROL [Internet] [citado 19 mar 2020]. Disponible en: https://www.teciasolanivora.com/ | spa |
dc.relation.references | Wilson, D. Endophyte the evolution of a term and clarification of its use and definition. Oikos. 1995; 73(2): 274-276. [Internet] [cited 18 mar 2021]. Available in: https://www.jstor.org/stable/3545919?seq=1 | spa |
dc.relation.references | Macías M, Hernández B, Jiménez M, González M, Glenn A, et al. Naftoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochem. 2006; 69(5): 1185-1196.[Internet] [cited 18 mar 2021]. Available in: https://pubmed.ncbi.nlm.nih.gov/18234248/ | spa |
dc.relation.references | Kusari, S., Hertweck, C. & Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. & Biol. 2012; 19: 792-798. [Internet] [cited 18 mar 2021]. Available in: https://www.sciencedirect.com/science/article/pii/S1074552112001998 | spa |
dc.relation.references | Bacon C, Hinton D. Microbial Endophytes: Future Challenges. En: Verma V., Gange A. (eds) Advances in Endophytic Research. Springer, Nueva Delhi. 2014; 441-451. [Internet] [cited 18 mar 2021]. Available in: https://link.springer.com/chapter/10.1007/978-81-322-1575-2_22 | spa |
dc.relation.references | Germaine K, Keogh E, García G, Borremans B, Van der Lelie D, et al. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiology Ecology. 2004; 48 (1): 109–118. [Internet] [citado 18 mar 2021]. Available in: https://pubmed.ncbi.nlm.nih.gov/19712436/ | spa |
dc.relation.references | Tsavkelova E, Cherdyntseva T, Botina S, Netrusov A. Bacteria associated with orchid roots and microbial production of auxin. Microbiological Research. 2007; 162 (1): 69-76. [Internet] [citado 18 mar 2021]. Available in: https://pubmed.ncbi.nlm.nih.gov/17140781/ | spa |
dc.relation.references | Perez A, Rojas J, Vale M. Biología y perspectiva de microorganismos endófitos asociados a plantas. Recia. 2009; 1(2): 286-01. [Internet] [citado 18 mar 2021]. Available in: https://revistas.unisucre.edu.co/index.php/recia/article/view/372 | spa |
dc.relation.references | Berg, G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology. 2009; 84(1): 11-18. [Internet] [cited 18 mar 2021]. Available in: https://pubmed.ncbi.nlm.nih.gov/19568745/ | spa |
dc.relation.references | Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E.y Schulze- Lefert, P. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 2013; 64(1): 807-838. [Internet] [cited 18 mar 2021]. Available in: https://www.annualreviews.org/doi/abs/10.1146/annurev-arplant- 050312- 120106#:~:text=Both%20the%20leaf%20and%20root,from%20soil%20for%20plant %20growth. | spa |
dc.relation.references | Rout M y Southworth D. The root microbiome influences scales from molecules to ecosystems: The unseen majority. American Journal of Botany. 2013; 100(9), 1689- 1691. [Internet] [cited 18 mar 2021]. Available in: https://pubmed.ncbi.nlm.nih.gov/24008514/ | spa |
dc.relation.references | Berg, G., Eberl, L., & Hartmann, A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 2005; 7(11): 1673-1685. [Internet] [cited 18 mar 2021]. Available in: https://pubmed.ncbi.nlm.nih.gov/16232283/#:~:text=One%20natural%20reservoir%2 0of%20opportunistic,strong%20antagonistic%20traits%20are%20enhanced. | spa |
dc.relation.references | Smit E., Leeflang P., Gommans S., van den Broek J., van Mil S, et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied Environmental Microbiology. 2001; 67: 2284-2291. [Internet] [cited 18 mar 2021]. Available in: https://aem.asm.org/content/67/5/2284 | spa |
dc.relation.references | Smalla K., Wieland G., Buchner A., Zock A., Parzy J., Kaiser N., Roskot H., Heuer H. & Berg G. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: PlantDependent Enrichment and Seasonal Shifts Revealed. Applied and Environmental Microbiology. 2001; 67: 4742- 4751. [Internet] [cited 18 mar 2021]. Available in: https://pubmed.ncbi.nlm.nih.gov/11571180/ | spa |
dc.relation.references | Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017; 15, 579–590. https://www.nature.com/articles/nrmicro.2017.87 | spa |
dc.relation.references | Barberán, A., Bates, S., Casamayor, E. et al. Using network analysis to explore co- occurrence patterns in soil microbial communities. ISME J 6. 2012; 343–351. [Internet] [cited 18 mar 2021]. Available in: https://www.nature.com/articles/ismej2011119#Abs1 | spa |
dc.relation.references | Gurung K, Wertheim B, Salles JF. The microbiome of pest insects: it is not just bacteria. Entomol Exp Appl. 2019;167(3):156-70. [Internet]. [cited 9 apr 2020]. Available in: https://onlinelibrary.wiley.com/doi/full/10.1111/eea.12768 | spa |
dc.relation.references | Brault V, Uzest M, Monsion B, Jacquot E, Blanc S. Aphids as transport devices for plant viruses. C R Biol. june 2010;333(6-7):524-38. [Internet]. [cited 9 apr 2020]. Available in: https://www.ncbi.nlm.nih.gov/pubmed/20541164 | spa |
dc.relation.references | Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative Symbionts in Aphids and the Horizontal Transfer of Ecologically Important Traits. Annu Rev Entomol. 2010;55(1):247-66. [Internet]. [cited 9 apr 2020]. Available in: https://www.annualreviews.org/doi/abs/10.1146/annurev-ento-112408-085305 | spa |
dc.relation.references | Roossinck MJ. Plant Virus Metagenomics: Biodiversity and Ecology. Annu Rev Genet. 2012;46(1):359-69. [Internet]. [cited 9 apr 2020]. Available in: https://www.ncbi.nlm.nih.gov/pubmed/22934641 | spa |
dc.relation.references | Engel P, Moran NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. [Internet]. 2013 [cited 19 mar 2020];37(5):699-735. Available in: https://www.ncbi.nlm.nih.gov/pubmed/23692388 | spa |
dc.relation.references | Hansen AK, Moran NA. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol. 2014;23(6):1473-96. [Internet]. [cited 9 apr 2020]. Available in: https://www.ncbi.nlm.nih.gov/pubmed/23952067 | spa |
dc.relation.references | Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci. febrero 2003;100(4):1803-7. [Internet]. [cited 11 apr 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC149914/ | spa |
dc.relation.references | Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, et al. Symbiotic Bacterium Modifies Aphid Body Color. Science. 19 november 2010;330(6007):1102-4. [Internet]. [cited 11 apr 2020]. Available in: https://www.researchgate.net/publication/49629111_Symbiotic_Bacterium_Modifies_ Aphid_Body_Color | spa |
dc.relation.references | Dillon RJ, Charnley AK. Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust, Schistocerca gregaria: Evidence for an antifungal toxin. J Invertebr Pathol. 1 may 1986;47(3):350-60.[Internet]. [cited 11 apr 2020]. Available in: https://www.sciencedirect.com/science/article/abs/pii/0022201186901060 | spa |
dc.relation.references | Dillon RJ, Charnley AK. Chemical Barriers to Gut Infection in the Desert Locust: In Vivo Production of Antimicrobial Phenols Associated with the Bacterium Pantoea agglomerans. J Invertebr Pathol. 1 de julio de 1995;66(1):72-5. [Internet]. [cited 20 apr 2020]. Available in: https://www.sciencedirect.com/science/article/abs/pii/S0022201185710634 | spa |
dc.relation.references | Gadad H, Vastrad AS. Gut bacteria mediated insecticide resistance in spodoptera litura (FAB.). Journal of Experimental Zoology, India 2016 Vol.19 No.2 pp.1099- 1102 ref.7 . [Internet]. [cited 20 apr 2020]. Available in: https://www.cabdirect.org/cabdirect/abstract/20163324584 | spa |
dc.relation.references | Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. Symbiont- mediated insecticide resistance. Proc Natl Acad Sci. 29 may 2012;109(22):8618-22. [Internet]. [cited 20 apr 2020]. Available in: https://www.ncbi.nlm.nih.gov/pubmed/22529384 | spa |
dc.relation.references | Li W, Jin D, Shi C, Li F. Midgut bacteria in deltamethrin-resistant, deltamethrin- susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Sci Rep. diciembre de 2017;7(1):1947. [Internet]. [cited 20 apr 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434009/ | spa |
dc.relation.references | Werren JH, Windsor D, Guo L. Distribution of Wolbachia among neotropical arthropods. Proc R Soc Lond B. 1995; 262 : 197-204. doi: 10.1098 / rspb.1995.0196.[Internet]. [citado 22 abr 2020]. Available in: https://www.researchgate.net/publication/238324299_Distribution_of_Wolbachia_am ong_Neotropical_Arthropods | spa |
dc.relation.references | Werren JH, Windsor DM. Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc R Soc Lond B. 2000;267:1277–1285. doi: 10.1098/rspb.2000.1139. [Internet]. [cited 22 apr 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1690679/pdf/10972121.pdf | spa |
dc.relation.references | Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J and Hurst GD. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 2008; 6: 27. [Internet]. [cited 22 apr 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2492848/ | spa |
dc.relation.references | Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim GH, Saravanan VS, Sa T. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos- susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition. J Appl Microbiol. 2007 Dec;103(6):2664-75. Epub 2007 Oct 31. [Internet]. [cited 22 apr 2020]. Available in: https://sfamjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2672.2007.0350 6.x | spa |
dc.relation.references | Broderick NA, Raffa KF, Goodman RM, Handelsman J. Census of the Bacterial Community of the Gypsy Moth Larval Midgut by Using Culturing and Culture- Independent Methods. Appl Environ Microbiol . 2004 Jan; 70(1): 293–300. [Internet]. [cited 22 apr 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC321235/#r70 | spa |
dc.relation.references | Xiang H, Wei G, Jia S, Huang J, Miao X, Zhou Z, Zhao L and Huang Y. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera).Canadian Journal of Microbiology, 2006, 52(11): 1085-1092. [Internet]. [cited 25 apr 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/17215900/ | spa |
dc.relation.references | Iverson K, Bromel M, Anderson A, Freeman T. Bacterial Symbionts in the Sugar Beet Root Maggot, Tetanops myopaeformis (von Röder). Appl Environ Microbiol. 1984 Jan; 47(1): 22–27. [Internet]. [cited 25 apr 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239605/pdf/aem00158-0040.pdf | spa |
dc.relation.references | Panigua V, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Front Microbiol. 2018; 9: 556. [Internet]. [cited 20 may 2020]. Available in: htps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881003/ | spa |
dc.relation.references | Santoyo G, Flores BH; Salmerón JH, Solís DR. Pérez MC, Lara PDL, Mosqueda MCO. Detección de los genes phlD y hcnC en bacterias antagonistas productoras de sideróforos asociadas a Rubus fruticosus L. Nova scientia, 12(24), 0-0. https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtyp e=crawler&jrnl=20070705&AN=143725661&h=WcqPqyT75p6ex7cvAgNgTGUEa1 NZUUhTHHTTt4WH0hY7oIgoSeIG3AI5YkNDFtHxcQG7IFQbkk%2fLmYAY0XH dzQ%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhas hurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtyp e%3dcrawler%26jrnl%3d20070705%26AN%3d143725661 | spa |
dc.relation.references | Sebastián. J, Sánchez C. De la flora intestinal al microbioma. Rev. esp. enferm. dig. 2018 ; 110( 1 ): 51-56.[Internet] [citado 4 sep 2020]. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1130- 01082018000100009&lng=es. | spa |
dc.relation.references | Benítez. L. El microbioma. Acta Med. 2012 [citado 4 sep 2020];10(4):220-223. Disponible en: https://www.medigraphic.com/pdfs/actmed/am-2012/am124j.pdf | spa |
dc.relation.references | Asociación Argentina de Ciencias del Comportamiento. XV Reunión nacional- IV Encuentro Internacional. Revista Argentina de Ciencias del Comportamiento ISSN 1852-4206 Agosto 2016 [citado 4 sep 2020]. Disponible en: https://dialnet.unirioja.es/descarga/articulo/7434030.pdf | spa |
dc.relation.references | Beltran M, Ortiz D, Nogueira G, Macero G, Tinajero E, et al. Microorganismos endófitos, su mundo secreto y aplicaciones en la agricultura. La ciencia desde Jalisco. 2015; Cap 1, p.p19. [Internet] [cited 17 mar 2021]. Disponible en: https://www.researchgate.net/publication/306378279_Microorganismos_endofitos_su _mundo_secreto_y_aplicaciones_en_la_agricultura | spa |
dc.relation.references | Mártinez C, Ortiz D,Tetsuya O, Beltrán M. Microorganismos endófitos ¿amigos o enemigos de las plantas? Revista Ciencia y Desarrollo. 2010; 36 (2), 242: 6-11. [Internet] [cited 17 mar 2021]. Disponible en: https://biblat.unam.mx/es/revista/ciencia-y-desarrollo/articulo/microorganismos- endofitos-amigos-o-enemigos-de-las-plantas | spa |
dc.relation.references | Londoño D, Quintero L. Microorganismos endofíticos presentes en la especie Witheringia coccoloboides (Solanaceae) del jardín botánico de la Universidad Tecnológica de Pereira [Trabajo de grado Tecnólogo en Química]. Pereira: Universidad Tecnológica de Pereira. Facultad de Tecnología; 2015. | spa |
dc.relation.references | Gyaneshwar, P.; James, E. K.; Mathan, N.; Reddy, P. M.; Reinhold-Hurek, B.; Ladha, J. K. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol. 2001; 183: 2634-2645. [Internet] [cited 17 mar 2021]. Available in: https://jb.asm.org/content/183/8/2634 | spa |
dc.relation.references | Bao, Y. J., Xu, Z., Li, Y., Yao, Z., Sun, J., & Song, H. (2017). High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism. Journal of environmental sciences, 56, 25-35. https://sisbib.unmsm.edu.pe/bibvirtualdata/Tesis/Salud/Rodriguez_LV/Introduc.PDF | spa |
dc.relation.references | https://www.sciencedirect.com/science/article/abs/pii/S1001074216306155 | spa |
dc.relation.references | Fredensborg B, Kálvalíð I, Johannesen T, Stensvold C, Nielsen H y Kapel C. Parasites modulate the gut-microbiome in insects: A proof-of-concept study. Plos one. 2020. 15 (1). [Internet] [cited 20 sep 2020] Available in: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227561#sec001 | spa |
dc.relation.references | Toro D. La biodiversidad microbiana del suelo: un mundo por descubrir. Revista Luna Azul. 2015; (19) 1- 7. [Internet] [citado 23 mar 2021]. Disponible en: http://lunazul.ucaldas.edu.co/downloads/Lunazul19_5.pdf | spa |
dc.relation.references | Azambuja P, Garcia E, Ratcliffe N. Gut microbiota and parasite transmission by insect vectors. Trends in Parasitology. 2005; 21: 568–572. [Internet] [cited 21 sep 2020]. Available in: https://www.sciencedirect.com/science/article/abs/pii/S1471492205002850 | spa |
dc.relation.references | Sistema de centros públicos de investigación CONACYT [Internet] México [citado 14 nov 2020]. Disponible en: https://centrosconacyt.mx/noticia/los-xenobioticos/ | spa |
dc.relation.references | Sinha S, Shelly S, Pritam C, Ieshita P, Pompee C et al. Microbial transformation of xenobiotics for environmental bioremediation. African Journal of Biotechnology 2009; 8(22), 6016–6027. [Internet] [cited 14 nov 2020]. Available in: https://www.researchgate.net/publication/285986648_Microbial_transformation_of_x enobiotics_for_environmental_bioremediation | spa |
dc.relation.references | Wong F., Alegria H.A., Jantunen L.M., Bidleman T.F., Salvador–Figueroa M., Gold– Bouchot G., Ceja–Moreno V., Waliszewski S.M. y Infanzon R. Organochlorine pesticides in soils and air of Southern Mexico: Chemical profiles and potential for soil emissions. Atmos. Environ. 2008; 42, 7737–7745. [Internet] [cited 16 nov 2020]. Available in: https://www.sciencedirect.com/science/article/abs/pii/S1352231008005074 | spa |
dc.relation.references | Khomenkov, V.G., Shevelev, A.B., Zhukov, V.G. et al. Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: A review. Appl Biochem Microbiol. 2008; 44, 117–135. [Internet] [cited 16 nov 2020]. Available in: https://link.springer.com/article/10.1134%2FS0003683808020014 | spa |
dc.relation.references | Li, X., Schuler, M. A., & Berenbaum, M. R. Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annual Review of Entomology. 2007; 52(1), 231–253. [Internet] [cited 14 nov 2020]. Available in: https://www.annualreviews.org/doi/full/10.1146/annurev.ento.51.110104.151104 | spa |
dc.relation.references | Peña Y. Degradación microbiana de compuestos xenobióticos. CienciAcierta No. 48 [Internet] 2016 [citado 16 nov 2020]. Disponible en: http://www.cienciacierta.uadec.mx/articulos/cc48/Degradacion.pdf | spa |
dc.relation.references | Chaudhry G.R., Mateen A., Kaskar B., Bloda M. y Riazuddin S. Purification and biochemical characterization of the carbamate hydrolase from Pseudomonas sp. 50432. Biotechnol. Appl. Biochem. 2002; 36: 63-70.[Internet] [cited 16 nov 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/12149124/ | spa |
dc.relation.references | Chaudhry G.R. y Ali A.N. Bacterial metabolism of carbofuran. Appl. Environ. Microbiol. 1988; 54, 1414-1419.[Internet] [cited 16 nov 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC202671/ | spa |
dc.relation.references | Topp E., Hanson R.S., Ringelberg D.B. White D.C. y Wheatcroft R. Isolation and characterization of an N-methylcarbamate insecticide-degrading methylotrophic bacterium. Appl. Environ. Microbiol. 1993; 59: 3339-3349 [Internet] [cited 16 nov 2020]. Available in: https://www.researchgate.net/publication/15695533_Isolation_and_characterization_o f_an_N-Methylcarbamate_insecticide-degrading_methylotrophic_bacterium | spa |
dc.relation.references | Desaint S, Hartmann A, Parekh N, Fournier J. Genetic diversity of carbofuran- degrading soil bacteria. FEMS Microbiology Ecology 34 (2000) 173-180. [Internet]. [cited 23 jun 2020]. Available in: https://www.sciencedirect.com/science/article/abs/pii/0168649695000197 | spa |
dc.relation.references | Ogram A.V., Duan Y.P., Trabue S.L., Feng X., Castro H. y Ou L.T. (2000). Carbofuran degradation mediated by three related plasmid systems. FEMS Microbiol. Ecol. 32, 197-203. [Internet] [cited 16 nov 2020]. Available in: https://www.sciencedirect.com/science/article/abs/pii/S0168649600000246 | spa |
dc.relation.references | Basta T., Keck A., Klein J. y Stolz A. (2004). Detection and characterization of conjugative degradative plasmids in xenobiotics degrading Sphingomonas strains. J. Bacteriol. 186, 3862– 3872. [Internet] [cited 16 nov 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/15175300/ | spa |
dc.relation.references | Fredensborg B, Kálvalíð I, Johannesen T, Stensvold C, Nielsen H y Kapel C. Parasites modulate the gut-microbiome in insects: A proof-of-concept study. Plos one. 2020. 15 (1). [Internet] [cited 20 sep 2020] Available in: https://pubmed.ncbi.nlm.nih.gov/31935259/ | spa |
dc.relation.references | Aguado G, Moreno B, Jiménez F, García M, Preciado R. Impacto de los sideróforos microbianos y fitosideróforos en la asimilación de hierro por las plantas: una síntesis. Rev. fitotec. mex. 2012 [citado 20 sep 2020] ; 35( 1 ): 9-21. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802012000100 004&lng=es. | spa |
dc.relation.references | Aude Aznar, Alia Dellagi, New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals?, Journal of Experimental Botany.2015; 66(11): 3001–3010. [Internet]. [cited 20 sep 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/25934986/ | spa |
dc.relation.references | Agrawal, Y., Narwani, T. y Subramanian, S. Genome sequence and comparative analysis of clavicipitaceous insect-pathogenic fungus Aschersonia badia with Metarhizium sp. BMC Genomics.2016; 17 (367). [Internet]. [cited 20 sep 2020]. Available in: https://www.researchgate.net/publication/303317673_Genome_sequence_and_compa rative_analysis_of_clavicipitaceous_insect-pathogenic_fungus_Aschersonia_badia_w ith_Metarhizium_spp | spa |
dc.relation.references | Zhang F, Sun XX, Zhang XC, Zhang S, Lu J, Xia YM, Huang YH y Wang XJ. The interactions between gut microbiota and entomopathogenic fungi: a potential approach for biological control of Blattella germanica (L.). Pest Manag. Sci. [Internet]. 2018 [Cited 26 feb 2021]; 74(2): 438-447. Available in: https://onlinelibrary.wiley.com/doi/abs/10.1002/ps.4726 | spa |
dc.relation.references | Benite A, Machado S, Machado B. Sideróforos: “Uma resposta dos microorganismos”. Quím. Nova. 2002 Dic. [citado 20 sep 2020]; 25 (6b), 1155-1164. Available in: https://www.scielo.br/scielo.php?pid=S0100- 40422002000700016&script=sci_arttext | spa |
dc.relation.references | Hikmate Abriouel, Charles M.A.P. Franz, Nabil Ben Omar, Antonio Gálvez. Diversity and applications of Bacillus bacteriocins, FEMS Microbiology Reviews, Volume 35, Issue. 2011; 201–232. [Internet] [cited 18 nov 2020]. Available in: https://www.researchgate.net/publication/45582360_Diversity_and_applications_of_ Bacillus_bacteriocins | spa |
dc.relation.references | Martín-Escolano, R., Cebrián, R., Martín-Escolano, J., Rosales, M. J., Maqueda, M., Sánchez-Moreno, M., & Marín, C. Insights into Chagas treatment based on the potential of bacteriocin AS-48. International Journal for Parasitology: Drugs and Drug Resistance. 2019; 10: 1-8. [Internet] [cited 18 nov 2020]. Available in: https://www.sciencedirect.com/science/article/pii/S2211320719300417 | spa |
dc.relation.references | Bashey, F., Young, S. K., Hawlena, H., & Lively, C. M. Spiteful interactions between sympatric natural isolates of Xenorhabdus bovienii benefit kin and reduce virulence. Journal of evolutionary biology, 2012; 25(3): 431-437. [Internet] [cited 18 nov 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/22221661/ | spa |
dc.relation.references | Bhattacharya Amrita Toro Díaz Valeria C. Morran Levi T. and Bashey Farrah. Evolution of increased virulence is associated with decreased spite in the insect- pathogenic bacterium Xenorhabdus nematophila. Biol. 2019; Lett.1520190432. [Internet] [cited 18 nov 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/31455168/ | spa |
dc.relation.references | Risdian C, Mozef T, Wink J. Biosynthesis of Polyketides in Streptomyces. Microorganisms. 2019; 7(5), 124. [Internet] [cited 21 sep 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560455/ | spa |
dc.relation.references | He, J., & Hertweck, C. Iteration as programmed event during polyketide assembly; molecular analysis of the aureothin biosynthesis gene cluster. Chemistry & biology. 2003;10(12): 1225-1232. [Internet] [cited 18 nov 2020]. Available in: https://www.sciencedirect.com/science/article/pii/S1074552103002540#BIB11 | spa |
dc.relation.references | Niehs, S. P., Kumpfmüller, J., Dose, B., Little, R. F., Ishida, K., et al. Insect- associated bacteria assemble the antifungal butenolide gladiofungin by non-canonical polyketide chain termination. Angewandte Chemie. 2020. [Internet] [cited 18 nov 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/32588959/ | spa |
dc.relation.references | Flórez, L. V., Scherlach, K., Miller, I. J., Rodrigues, A., Kwan, J. C., et al. An antifungal polyketide associated with horizontally acquired genes supports symbiont- mediated defense in Lagria villosa beetles. Nature communications. 2018;9(1), 1-10. [Internet]. [cited 20 sep 2020]. Available in: https://www.researchgate.net/publication/325988750_An_antifungal_polyketide_asso ciated_with_horizontally_acquired_genes_supports_symbiont-mediated_defense_in_ Lagria_villosa_beetles | spa |
dc.relation.references | (70)Van AEB, Currie CR, y Clardy, J. Defense contracts: molecular protection in insect-microbe symbioses. Chem. Soc. Rev [internet]. 2018 [cite 1 mar 2021]; 47(5:, 1638-1651. Available in : https://pubs.rsc.org/en/content/articlehtml/2018/c fs/c7cs00340d | spa |
dc.relation.references | Biology. LibreTexts. Poliketide antibiotics. [Internet] [cited 21 sep 2020]. Avilable in: https://bio.libretexts.org/Bookshelves/Microbiology/Book%3A_Microbiology_(Boun dless)/5%3A_Microbial_Metabolism/5.13%3A_Anabolism/5.13E%3A_Polyketide_A ntibiotics | spa |
dc.relation.references | Pérez J y Gardey A. Definición de toxina [internet]. Definición de. 2015 [citado 2020 Sep 17. Disponible en: https://definicion.de/toxina/] | spa |
dc.relation.references | Trunk, K., Coulthurst, S. J., & Quinn, J. A New Front in Microbial Warfare— Delivery of Antifungal Effectors by the Type VI Secretion System. Journal of Fungi. 2019; 5(2): 50. [Internet] [cited 18 nov 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/31197124/ | spa |
dc.relation.references | Naciones Unidas. World Population Prospects 2019 > Highlights. [Internet] [citado 20 mar 2021] Disponible en: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf | spa |
dc.relation.references | Kanehisa, M. y Goto, S .; KEGG: Enciclopedia de genes y genomas de Kyoto. Ácidos nucleicos Res. 28, 27 - 30 (2000). https://doi.org/10.1093/nar/28.1.27 | spa |
dc.relation.references | Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. y Tanabe, M .; Nuevo enfoque para comprender las variaciones del genoma en KEGG. Ácidos nucleicos Res. 47, D590-D595 (2019). https://doi.org/10.1093/nar/gky962 | spa |
dc.relation.references | Kanehisa, M; Hacia la comprensión del origen y evolución de los organismos celulares. Protein Sci. 28, 1947-1951 (2019) https://doi.org/10.1002/pro.3715 | spa |
dc.relation.references | UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research. https://academic.oup.com/nar/article/47/D1/D506/5160987 | spa |
dc.relation.references | Galindo D , Zapata T, Ocampo I, Corrales M. Caracterización de bacterias asociadas a la rizósfera de plantas de yuca (Manihot esculenta Crantz) sometidas a estrés por déficit hídrico [Trabajo de grado presentado como requisito parcial para optar al título de: Microbióloga]. Cali: Universidad Santiago de Cali; 2019. | spa |
dc.relation.references | Rodrigo A. Vergara R. Francisco C. Yepes R. Miguel A. Fortalecimiento y Capacitación Técnico Empresarial para cuatro Microempresas Agroindustriales del Municipio de Granada.2020 [Internet] [Consultado 20 mar 2021] Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/4795/1/066.pdf | spa |
dc.relation.references | Maloney S, Maule A, Smith A. Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus. Applied and eEnvironmental microbiology. 1993; 59 (7): 2007- 2013. [Internet] [cited 23 mar 2021]. Available in: https://aem.asm.org/content/59/7/2007 | spa |
dc.relation.references | Wang B, Guo P, Hang B, Li L, He J, et al. Cloning of a Novel Pyrethroid- Hydrolyzing Carboxylesterase Gene from Sphingobium sp. Strain JZ-1 and Characterization of the Gene Product. Applied and Environmental Microbiology. 2009;75(17), 5496–5500. [Internet] [cited 23 mar 2021]. Available in: https://aem.asm.org/content/75/17/5496 | spa |
dc.relation.references | Yan X, Jin W, Wu G, Jiang W, Yang Z, Ji J, Qiu J, He J, Jiang J, Hong Q. Hydrolase CehA and monooxygenase CfdC are responsible for carbofuran degradation in Sphingomonas sp. strain CDS-1. Appl Environ Microbiol. 2018; 84:e00805-18. [Internet]. [cited 3 aug 2020]. Available in: https://www.researchgate.net/publication/325652492_Hydrolase_CehA_and_monoox ygenase_CfdC_are_responsible_for_the_degradation_of_carbofuran_in_Sphingomon as_sp_strain_CDS-1 | spa |
dc.relation.references | Marfil MD. Diversidad de genes policetidos sintasas tipo I en un metagenoma de agua subterranea del acuerifero de yucatan. [Tesis]. Mérida, Yucatan, Mexico, CICY; 2017. 218 p. Disponible en: https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/457/1/PCB_BT_D_Tesis _2017_Marfil_Miguel.pdf | spa |
dc.relation.references | Aguado SGA, Moreno GB, Jiménez FB, García ME y Preciado ORE. Impacto de los sideróforos microbianos y fitosidéforos en la asimilación de hierro por las plantas: una síntesis[Internet]. 2012[cite 2021 ]; 35(1): 9-21. Disponible en: http://www.scielo.org.mx/scielo.php?pid=S0187- 73802012000100004&script=sci_arttext | spa |
dc.relation.references | Tomasek P, Karns J. Cloning of a carbofuran hidrolase gene from Achromobacter sp. strain WM111 and its expression in gram-negative bacteria. Journal of Bacteriology. 1989; 171: 4038-4044. [Internet]. [cited 31 aug 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC210159/ | spa |
dc.relation.references | Devi Y, Louremba D, Shantibala T, Subharani S, Modak R y Rajashekar Y. Assessment of gut microbiota associated with oak tasar silkworm, Antheraea proylei J.(Lepidoptera: Saturniidae). Authorea [Internet]. 2020. [cited 23 mar 2021]. Available in: : .https://www.authorea.com/doi/full/10.22541/au.159620873.39022932/. | spa |
dc.relation.references | Higuera MD. Los microorganismos del suelo en la nutrición vegetal. Investigación aplicada y Desarrollo. Orius Biotecnología. Villavicencio, Colombia.2008 https://www.oriusbiotech.com/escrito?nom=Los_microorganismos_del_suelo_en_la_ nutrici%C3%B3n_vegetal. | spa |
dc.relation.references | Gamboa, M. A., & Bayman, P.. Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae) 1. Biotropica [Internet]. 2001[cite 2021]; 33(2); 352-360. Available in: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1744-7429.2001.tb00187.x | spa |
dc.relation.references | PRTR España. Ministerio para la Transición Ecológica y el Reto Demográfico [Internet] Madrid.[consultado 18 nov 2020]. Disponible en: http://www.prtr- es.es/Naftaleno,15655,11,2007.html | spa |
dc.relation.references | Wilson MS, Herrick JB, Jeon CO, Hinman DE, Madsen EL. Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl Environ Microbiol. 2003 Apr;69(4):2172-81. [Internet]. [cited 18 nov 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/12676698/ | spa |
dc.relation.references | Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen WC, Cruden DL, Gibson DT, Zylstra GJ. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene. 1993 May 15;127(1):31-7. https://pubmed.ncbi.nlm.nih.gov/8486285/ | spa |
dc.relation.references | Lessner DJ, Johnson GR, Parales RE, Spain JC, Gibson DT. Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Appl Environ Microbiol. 2002 Feb;68(2):634-41. https://pubmed.ncbi.nlm.nih.gov/11823201/ | spa |
dc.relation.references | Suen WC, Haigler BE, Spain JC. 2,4-Dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: similarity to naphthalene dioxygenase. J Bacteriol. 1996 Aug;178(16):4926-34. Available in: https://pubmed.ncbi.nlm.nih.gov/8759857/ | spa |
dc.relation.references | Hernández-Moreno, D., Míguez-Santiyán, M. P., Oropesa-Jiménez, A. L., Soler-Rodríguez, F., van Wyk, J., & Pérez-López, M. Bifenilos policlorados y disrupción endocrina en la fauna salvaje. Observatorio Medioambiental. 2016; (19), 91-109. [Internet]. [citado 21 Febrero 2021]. Disponible en: https://revistas.ucm.es/index.php/OBMD/article/view/54160 | spa |
dc.relation.references | Lykidis, A., Pérez-Pantoja, D., Ledger, T., Mavromatis, K., Anderson, I. J., Ivanova, N. N., ... Kyrpides, N. C. (2010). The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader. PLoS ONE, 5(3), e9729. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009729 | spa |
dc.relation.references | Van der Meer JR, Eggen RI, Zehnder AJ, de Vos WM. Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol. 1991 Apr;173(8):2425-34. https://pubmed.ncbi.nlm.nih.gov/2013566/ | spa |
dc.relation.references | Devine J, Eza D, Ogusuku E, Furlong M. Uso de insecticidas: contexto y consecuencias ecológicas. Rev. Perú. med. exp. salud pública. [Internet] [citado 25 sep 2020 ]. 2008 ; 25( 1 ): 74-100. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726- 46342008000100011&lng=es. | spa |
dc.relation.references | QuickGo [Internet]. Hydrolase activity. [cited 31 aug 2020]. Available in: https://www.ebi.ac.uk/QuickGO/term/GO:0016787 | spa |
dc.relation.references | Hashimoto M, Fukui M, Hayano K, Hayatsu M. Nucleotide Sequence and Genetic Structure of a Novel Carbaryl Hydrolase Gene (cehA) from Rhizobium sp. Strain AC100. Applied and environmental microbiology. 2002; 68 (3): 1220–1227. [Internet]. [cited 24 jun 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/11872471/ | spa |
dc.relation.references | Rousidou K, Chanika E, Georgiadou D, Soueref E, Katsarou D et al. Isolation of Oxamyl-degrading Bacteria and Identification of cehA as a Novel Oxamyl Hydrolase Gene. Frontiers in Microbiology. 2016; 616 (7). [Internet]. [cited 3 aug 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850150/ | spa |
dc.relation.references | Öztürk, B., Ghequire, M., Nguyen, T. P. O., De Mot, R., Wattiez, R., & Springael, D. Expanded insecticide catabolic activity gained by a single nucleotide substitution in a bacterial carbamate hydrolase gene. Environmental Microbiology. 2016; 18(12), 4878–4887. [Internet]. [cited 3 aug 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/27312345/ | spa |
dc.relation.references | Hayatsu M, Hirano M, Nagata T. Involvement of Two Plasmids in the Degradation of Carbaryl by Arthrobacter sp. Strain RC100. Applied and environmental microbiology. 1999; 65 (3):1015-1019. [Internet]. [cited 24 jun 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC91138/ | spa |
dc.relation.references | Tomasek P, Karns J. Cloning of a carbofuran hidrolase gene from Achromobacter sp. strain WM111 and its expression in gram-negative bacteria. Journal of Bacteriology. 1989; 171: 4038-4044. [Internet]. [cited 31 aug 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC210159/ | spa |
dc.relation.references | Kim I, Kim DU, Kim NH, Ka JO. Isolation and characterization of fenobucarb-degrading bacteria from rice paddy soils. Biodegradation. 2014;25(3):383-394. [Internet]. [cited 24 jun 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/24197220/ | spa |
dc.relation.references | Uniprot [Internet]. Carboxylesterase. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/P23141 | spa |
dc.relation.references | Singh B, Kaur J, Singh K. Biodegradation of malathion by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU. World J Microbiol Biotechnol. October 2012; 28:1133-1141. [Internet]. [cited 23 jun 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/22805834/ | spa |
dc.relation.references | Kawahara K, Tanaka A, Yoon J, Yokota A. Reclassification of a parathione- degrading Flavobacterium sp. ATCC 27551 as Sphingobium fuliginis. The Journal of General and Applied Microbiology. 2010; 56(3): 249–255. [Internet]. [cited 31 aug 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/20647682/ | spa |
dc.relation.references | Liu H, Zhang J, Wang S, Zhang X, Zhou N. Plasmid-borne catabolism of methyl parathion and p -nitrophenol in Pseudomonas sp. strain WBC-3. Biochemical and Biophysical Research Communications. 2005; 334(4): 1107–1114. [Internet]. [cited 31 aug 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/16039612/ | spa |
dc.relation.references | QuickGo [Internet]. Aryldialkylphosphatase activity. [cited 31 aug 2020]. Available in: https://www.ebi.ac.uk/QuickGO/term/GO:0004063 | spa |
dc.relation.references | Ortiz L, Monterrosas M, Yánez G, Sánchez E. Biodegradation of methyl- parathion by bacteria isolated of agricultural soil..Revista Internacional de Contaminacion Ambiental. 2000; 17(3). [Internet]. [cited 31 aug 2020]. Available in: https://www.researchgate.net/publication/26474835_Biodegradation_of_methyl- parathion_by_bacteria_isolated_of_agricultural_soil | spa |
dc.relation.references | Uniprot [Internet]. Cytochrome P450 3A4. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/P08684 | spa |
dc.relation.references | Chen, B, Zhang N, Xie S, Zhang X, He J et al. Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environment International. 2020; 143, 105886. [Internet]. [cited 17 aug 2020]. Available in: https://www.sciencedirect.com/science/article/pii/S0160412020318419 | spa |
dc.relation.references | Reyes M, Bouvier J, Boivin T, Contreras E, Sauphanor B. Susceptibilidad a Insecticidas y Actividad Enzimática de Cydia pomonella L. (Lepidoptera: Tortricidae) Proveniente de Tres Huertos de la Región del Maule, Chile. Agricultura Técnica. 2004; 64(3): 229-237. [Internet]. [citado 1 jul 2020]. Disponible en: https://www.researchgate.net/publication/28075280_Susceptibilidad_a_Insecticidas_y _Actividad_Enzimatica_de_Cydia_pomonella_L_Lepidoptera_Tortricidae_Provenien te_de_Tres_Huertos_de_la_Region_del_Maule_Chile | spa |
dc.relation.references | Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater. 2009; 168: 400–405. [Internet]. [cited 11 aug 2020]. Available in: https://www.sciencedirect.com/science/article/abs/pii/S0304389409002441 | spa |
dc.relation.references | Silambarasan S, Abraham. Kinetic studies on enhancement of degradation of chlorpyrifos and its hydrolyzing metabolite TCP by a newly isolated Alcaligenes sp. JAS1. Journal of the Taiwan Institute of Chemical Engineers. 2013; 44(3): 438–445. [Internet]. [cited 12 aug 2020]. Available in: https://www.sciencedirect.com/science/article/abs/pii/S1876107012002064 | spa |
dc.relation.references | Wang Z, Jiang S, Mota D, Wang W, Li X, et al. Cytochrome P450-mediated lambda-cyhalothrin-resistance in a field strain of Helicoverpa armigera from northeast China. Journal of Agricultural and Food Chemistry. 2019; 67 (13): 3546-3553. [Internet]. [cited 31 auf 2020]. Available in: https://www.researchgate.net/publication/331844109_Cytochrome_P450- mediated_lambda-cyhalothrin- resistance_in_a_field_strain_of_Helicoverpa_armigera_from_northeast_China | spa |
dc.relation.references | Wang W, Hu C, Li X, Wang X, Yang X. CpGSTd3 is a lambda-cyhalothrin metabolizing glutathione S-transferase from Cydia pomonella (L.). Journal of Agricultural and Food Chemistry. 2019; 67 (4): 1165-1172. [Internet]. [cited 31 aug 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/30638381/ | spa |
dc.relation.references | Li Y, Bai L, Zhao C, Xu J, Sun Z et al. Functional Characterization of Two Carboxylesterase Genes Involved in Pyrethroid Detoxification in Helicoverpa armígera. Journal of Agricultural and Food Chemistry. 2020; 68 (11): 3390-3402. [Internet]. [cited 31 aug 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/32096985/ | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K15431. [cited 29 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K15431 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: KK10816 [cited 29 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K10816 | spa |
dc.relation.references | Uniprot [Internet]. Phloroglucinol synthase [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/Q51725 | spa |
dc.relation.references | Uniprot [Internet]. Hydrogen cyanide synthase. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/O85228 | spa |
dc.relation.references | Li B, Li Q, Xu Z, Zhang N, Shen Q y Zhang R. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front. Microbiol., 21 November 2014 [Internet]. [cited 2 jul 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240174/#:~:text=Bacillus%20amylo liquefaciens%20SQR9%20exhibited%20predominantly,broad%20range%20of%20soi lborne%20pathogens.&text=SQR9%20altered%20its%20spectrum%20of,was%20con fronted%20with%20Fusarium%20oxysporum. | spa |
dc.relation.references | Chowdhury SP, Hartmann A, Gao X y Borriss R.Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Microbiol., 28 de julio de 2015 [Internet]. [cited 2 jul 2020]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517070/ | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K00216. [cited 29 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K00216 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K01252. [cited 29 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K01252 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K02361. [cited 29 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K02361 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K14333. [cited 29 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K14333 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K02363. [cited 29 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K02363 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K04780. [cited 29 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K04780 | spa |
dc.relation.references | Uniprot [Internet]. 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/P39071 | spa |
dc.relation.references | Uniprot [Internet]. Isochorismatase. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/P45743 | spa |
dc.relation.references | Uniprot [Internet]. Glycerol dehydratase medium subunit. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/P45744 | spa |
dc.relation.references | Uniprot [Internet]. 2,3-dihydroxybenzoate decarboxylase. [cited 29 aug 2020].Available in: https://www.uniprot.org/uniprot/P80346 | spa |
dc.relation.references | Uniprot [Internet]. 2,3-dihydroxybenzoate-AMP ligase[cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/P40871 | spa |
dc.relation.references | Uniprot [Internet]. Dimodular nonribosomal peptide synthase. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/P45745 | spa |
dc.relation.references | Uniprot [Internet]. Pyoverdin chromophore biosynthetic proteine. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/O30372 | spa |
dc.relation.references | Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, Schwecke T, Herfort S, Lasch P, Borriss R. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. American Society for Microbiology Journals. 17 de abril de 2014 [Internet]. [cited 2 jul 2020]. Available in: https://pubmed.ncbi.nlm.nih.gov/24610713/ | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K06384. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?bay:RBAM_029200 | spa |
dc.relation.references | Uniprot [Internet]. Uncharacterized protein. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/A7Z8C9 | spa |
dc.relation.references | Uniprot [Internet]. Circular bacteriocin, circularin A/uberolysin family. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/A7Z8C8 | spa |
dc.relation.references | Uniprot [Internet]. Uncharacterized protein. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/A7Z8C7 | spa |
dc.relation.references | Uniprot [Internet]. ABC transporter ATP-binding protein. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/A7Z8C6 | spa |
dc.relation.references | Uniprot [Internet]. Uncharacterized protein. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/A7Z8C5 | spa |
dc.relation.references | Uniprot [Internet]. Uncharacterized protein. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/A7Z8C4 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K01681. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K01681 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K01682. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K01682 | spa |
dc.relation.references | Uniprot [Internet]. Aconitate hydratase. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/A7Z567 | spa |
dc.relation.references | Uniprot [Internet]. Aconitate hydratase B. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/Q8ZRS8 | spa |
dc.relation.references | Uniprot [Internet]. Aconitate hydratase. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/W6QXI3 | spa |
dc.relation.references | Uniprot [Internet]. 2-methylcitrate dehydratase (2-methyl-trans-aconitate forming). [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/Q8EJW3 | spa |
dc.relation.references | Scholz R, Molohon KJ, Nachtigall J, Vater J, Markley AL, Süssmuth RD, Mitchell DA, Borriss R. Plantazolicin, a Novel Microcin B17/Streptolysin S-Like Natural Product from Bacillus amyloliquefaciens FZB42. American Society for Microbiology Journals. 9 de diciembre de 2010[Internet]. [cited 2 jul 2020]. Availablein: https://pubmed.ncbi.nlm.nih.gov/20971906/ | spa |
dc.relation.references | Uniprot [Internet]. Regulatory protein ArsR. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A0U1P3A8 | spa |
dc.relation.references | Uniprot [Internet]. Parathion hydrolase. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/P0A442 | spa |
dc.relation.references | Uniprot [Internet]. Parathion hydrolase. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/P0A442 | spa |
dc.relation.references | Uniprot [Internet]. Pentapeptide repeat-containing protein. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A2X4VXY6 | spa |
dc.relation.references | Uniprot [Internet]. Plantazolicin. [cited 29 aug 2020]. Available in: https://www.uniprot.org/uniprot/D3VML5 | spa |
dc.relation.references | Shao Y, Chen B, Sun C, Ishida K, Hertweck C y Boland W. Symbiont- Derived Antimicrobials Contribute to the Control of the Lepidopteran Gut Microbiota. Cell Chem. Biol [Internet]. 2017 [Cited 20 sep 2020]; 24(1):66-75. Available in: https://www.sciencedirect.com/science/article/pii/S245194561630438X | spa |
dc.relation.references | Uniprot [Internet]. Mundticin KS. [cited 1 mar 2020]. Available in: https://www.uniprot.org/uniprot/Q8RR65 | spa |
dc.relation.references | Uniprot [Internet]. ATP-dependent transporter. [cited 1 mar 2020]. Available in: https://www.uniprot.org/uniprot/Q8RR64 | spa |
dc.relation.references | Uniprot [Internet]. Mundticin KS immunity protein. [cited 1 mar 2020]. Available in: https://www.uniprot.org/uniprot/Q8RR63 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K15327. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K15327 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K15328. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K15328 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K15329. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K15329 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K15337. [cited 31 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K15337 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K15311. [cited 31 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K15311 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K15312. [cited 31 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K15312 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K15313. [cited 31 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K15313 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K13611. [cited 31 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K13611 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K13612. [cited 31 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K13612 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K13613. [cited 31 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K13613 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K13614. [cited 31 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K13614 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K07664. [cited 31 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K07664 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K07642. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K07642 | spa |
dc.relation.references | Uniprot [Internet]. Probable polyketide biosynthesis zinc-dependent hydrolase BaeB. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/A7Z4X7 | spa |
dc.relation.references | Uniprot [Internet]. Polyketide biosynthesis malonyl CoA-acyl carrier protein transacylase BaeC. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/A7Z4X8 | spa |
dc.relation.references | Uniprot [Internet]. Polyketide biosynthesis acyltransferase homolog BaeD. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/A7Z4X9 | spa |
dc.relation.references | Uniprot [Internet].Polyketide biosynthesis protein BaeE. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/A7Z4Y0 | spa |
dc.relation.references | Uniprot [Internet]. polyketide synthase baeJ. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/S6FXN1 | spa |
dc.relation.references | Uniprot [Internet]. Polyketide synthase of type I BaeL. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/S6G1T3 | spa |
dc.relation.references | Uniprot [Internet]. polyketide synthase. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/Q1RS71 | spa |
dc.relation.references | Uniprot [Internet]. Polyketide synthase of type I. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/S6FS46 | spa |
dc.relation.references | Uniprot [Internet]. Transcriptional regulatory protein BaeR. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/P69228 | spa |
dc.relation.references | Uniprot [Internet]. Signal transduction histidine-protein kinase BaeS. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/P30847 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K015328. [cited 2 mar 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K15328 | spa |
dc.relation.references | Uniprot [Internet]. Polyketide biosynthesis acyltransferase homolog PksD. [cited 2 mar 2020]. Available in: https://www.uniprot.org/uniprot/O34877 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K03610. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K03610 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K03609. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K03609 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K03608. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K03608 | spa |
dc.relation.references | Uniprot [Internet]. septum site-determining protein MinC. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/Q01463 | spa |
dc.relation.references | Uniprot [Internet]. Septum site-determining protein MinD. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/P0AEZ3 | spa |
dc.relation.references | Uniprot [Internet].Cell division topological specificity factor. [cited 30 aug 2020]. Available in: https://www.uniprot.org/uniprot/P0A734 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K01911. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K01911 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K00059. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K00059 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K13615 [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K13615 | spa |
dc.relation.references | KEGG [Internet]. KEGG ORTHOLOGY: K23138. [cited 30 aug 2020]. Available in: https://www.genome.jp/dbget-bin/www_bget?ko:K23138 | spa |
dc.relation.references | Uniprot [Internet]. 3-oxoacyl-[acyl-carrier protein] reductase. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/I2C7F0 | spa |
dc.relation.references | Uniprot [Internet]. Difficidin polyketide synthase. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A1S6KMD5 | spa |
dc.relation.references | Uniprot [Internet]. Difficidin polyketide synthase. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A1S6KMD8 | spa |
dc.relation.references | Uniprot [Internet]. Difficidin polyketide synthase. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A1S6KMD4 | spa |
dc.relation.references | Uniprot [Internet]. DfnG. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/S6FTA1 | spa |
dc.relation.references | Uniprot [Internet]. Difficidin polyketide synthase. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A1S6KMD2 | spa |
dc.relation.references | Uniprot [Internet]. 3-hydroxyacyl-[acyl-carrier-protein] dehydratase. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/S6FYE2 | spa |
dc.relation.references | Uniprot [Internet]. Difficidin polyketide synthase. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A1S6KMD6 | spa |
dc.relation.references | Uniprot [Internet].DfnL. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/S6FT99 | spa |
dc.relation.references | Uniprot [Internet].DfnM. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/S6FMI2 | spa |
dc.relation.references | Uniprot [Internet]. Difficidin polyketide synthase. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A1S6KMD0 | spa |
dc.relation.references | Uniprot [Internet]. DfnY. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/S6FYE5 | spa |
dc.relation.references | Steele MI, Kwong WK, Whiteley M, Moran NA. 2017. Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. mBio. December 12, 2017 [Internet]. [cited 10 ag 2020]. Available in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727410/ | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion system protein TssA. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A525CB59 | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion system contractile sheath small subunit. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A2U0AHM3 | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion system contractile sheath large subunit. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A2T6N7J1 | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion system protein. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A4P2WQ07 | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion system baseplate subunit TssE. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A2T6NNL4 | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion system baseplate subunit TssF. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A3G6WGW4 | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion protein. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A2U0AHU4 | spa |
dc.relation.references | Uniprot [Internet]. Type VI secretion system ATPase TssH. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A6G8CLT7 | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion system tip protein VgrG. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A795C265 | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion system protein TssJ. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A160JEG3 | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion system baseplate subunit TssK. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A2T6N7L9 | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion system protein TssL. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A2T6NNN7 | spa |
dc.relation.references | Uniprot [Internet].Type VI secretion system membrane subunit TssM. [cited 31 aug 2020]. Available in: https://www.uniprot.org/uniprot/A0A3N4FUY8 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | Microbiomas | |
dc.subject.lemb | Plagas | |
dc.subject.lemb | Cultivos | |
dc.subject.proposal | Compuestos xenobióticos | spa |
dc.subject.proposal | Insecticidas | spa |
dc.subject.proposal | Protección contra patógenos | spa |
dc.subject.proposal | Genes | spa |
dc.subject.proposal | Bacterias | spa |
dc.subject.proposal | Insectos | spa |
dc.subject.proposal | Plantas | spa |
dc.subject.proposal | Suelo | spa |
dc.subject.proposal | Biorremediación | spa |
dc.subject.proposal | Control biológico | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |