Determinación de la composición química de los aceites esenciales de Tomillo (*Thymus vulgaris*) y Romero (*Rosmarinus officinalis*) y su posible uso como antifúngico contra microorganismos fitopatógenos en productos agrícolas.

Carol Valentina Florez Chacon

Jhoan Sebastian Mojica Florez

Asesora Jovanna Acero Godoy MSc Universidad Colegio Mayor de Cundinamarca Bacteriología y laboratorio clínico Bogotá D.C 2019

Tabla de contenido

- Introducción Planteamiento del problema
- Objetivos
- Metodología
- Resultados
- Discusión
- Conclusiones

Susceptibles a: Cesar - 125,7 Ha Sucre - 18 Ha Cesar - 3.799 Ha Cordoba - 4.042,7 Hi Cordoba - 10.186 Ha Santander - 32,5 Ha Antioquia - 64 Ha C/marca - 107,7 Ha Huila - 197 Ho Tolima - 1.266 Ho Tolima - 4.088 Ha Meta - 3.138 Ha Dotox de 2010. Fuente ICA.

Enfermedades causadas por fitopatógenos

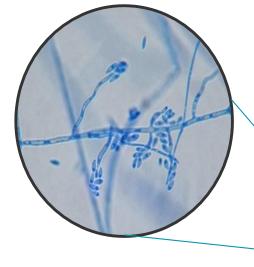
Como:

Fusarium spp.

Alternaria spp.

http://www.labarracademaria.com/cate goria-producto/control-deplagas/control-de-plagas-por-plaga/

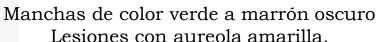
http://www.eliminalahumedad.com/ alternaria/

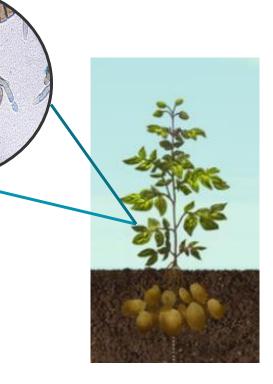

© 2010. Agrobio. Todos los derechos reservados.

Plaguicidas

Fusarium spp.

Producción de metabolitos tóxicos.


Enfermedades caracterizadas por marchitez, tizones, pudriciones en cultivos ornamentales Determinación de la composición química de los aceites esenciales de Tomillo (*Thymus vulgaris*) y Romero (*Rosmarinus officinalis*) y su posible uso como antifúngico contra microorganismos fitopatógenos en productos agrícolas.


Alternaria spp.

Compuestos tóxicos, que afectan tanto a la planta como a humanos y animales.

Infectan las hojas, las flores o las frutos

Plaguicidas para el control de patógenos agrícolas

https://www.agronegocios.co/agricultura/eliminar-malezas-consume-40-del-tiempo-de-los-agricultores-y-reduce-la-produccion-2802256

Cualquier sustancia o mezcla de sustancias destinadas a prevenir, destruir o controlar cualquier plaga

Se encuentran:

↓

Fungicidas

Carbendazim

Mancozeb

Clorotalonil

Registro nacional de plaguicidas químicos de uso agrícola en Colombia

Bioplaguicida

Plaguicidas naturales derivados de extractos de materias naturales de plantas.

Ingredientes activos de los bioplaguicidas a base de sustancias bioactivas

Extractos botánicos

Bioactividad alta

Propiedades antifúngicas

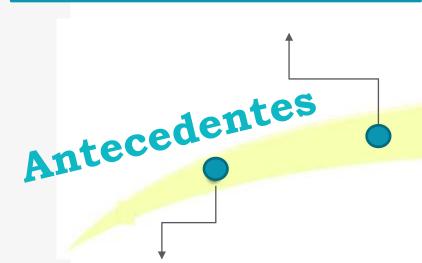
Aceites esenciales

Propiedades antioxidantes

Propiedades antibacterianas

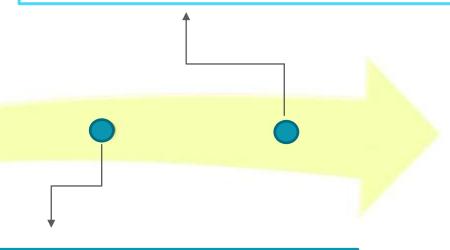
Son mezclas de componentes volátiles, productos del metabolismo secundario de las plantas.

Aceites esenciales


Terpénicos, alcoholes, cetonas, éteres, compuestos fenólicos, entre otros

Son separables por métodos físicos o químicos.

Tomillo Los aceites esenciales están distribuidos en varias familias de plantas, como lo son la familia Romero Lamiaceae



2015 Da Silva Bomfim *et.al.*Actividad antifúngica e inhibición de la producción de fumonisina por el aceite esencial de *Rosmarinus officinalis* en *Fusarium verticillioides*.
AE con concentración de 150 ug/ml, el AE rompe la pared celular.

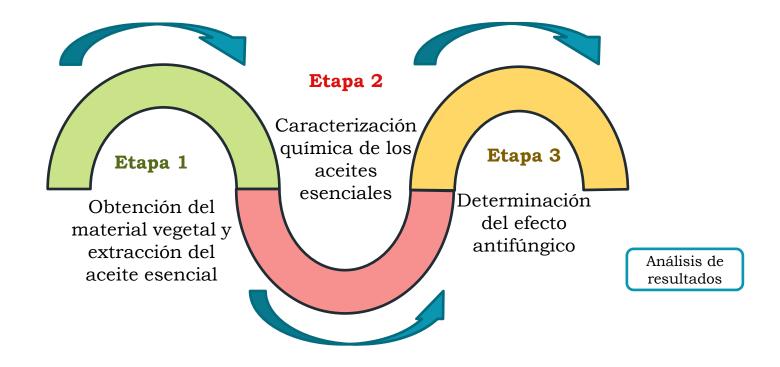
2008 Ozcan M.M, et. al. AE de romero frente a A. alternata y F. Oxysporum, obtuvieron un rendimiento 1,9%, A. alternata inhibición parcial a 40 ug/ml, F. oxysporum inhibición parcial a 10 y 40 ug/ml.

2019 Rahmouni, A *et. al.* efecto antifúngico de *Rosmarinus officinali*s contra *Fusarium oxysporum.* Caracterizacion química: 1,8-cineol, alcanfor y α- y β-pineno mayores compuestos. *Fusarium oxysporum.* inhibido a 40 μl/ml.

2015 S. Hmiri *et. al.* Composición química y el efecto antifúngico del aceite esencial de romero, 23 compuestos (1,8 cineol mayor %). AE inhibió *A. alternata (*800 ul/l), *B. cinérea (*1200 ul/l) y *P. expansum (*>1800 ul/l)

Objetivos

General


Determinar la posible actividad antifúngica de los aceites esenciales en fitopatógenos de interés agrícola.

Específicos

- Para la extracción de los aceites esenciales de *Rosmarinus officinalis* y *Thymus vulgaris* evaluando rendimiento y peso seco.
- Efectuar la caracterización química de los aceites esenciales de *Thymus vulgaris* y *Rosmarinus officinalis*.
- Determinar la concentración específica o CMI en la que los aceites esenciales pueden inhibir el crecimiento de hongos patógenos en cultivos agrícolas.

Tabla de contenido

- Introducción Planteamiento del problema
- Objetivos
- Metodología
- Resultados
- Discusión
- Conclusiones

UNIVERSIDAD NACIONAL DE COLOMBIA

SEDE BOGOTĂ FACULTAD DE CIENCIAS

INSTITUTO DE CIENCIAS NATURALES HERBARIO NACIONAL COLOMBIANO (COL)

COL - 55

Bogotá D.C., 22 de julio de 2019

Señores

SEBASTIAN MOJICA

Ciudad

Asunto: Identificación Taxonómica muestras

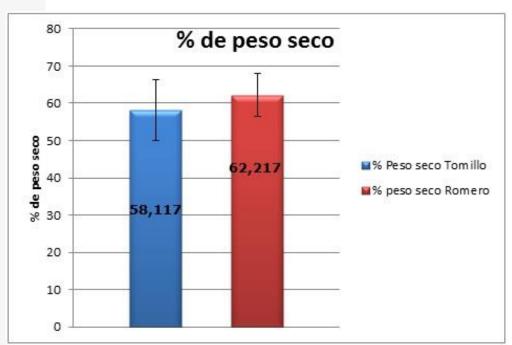
Cordial Saludo,

Me permito dar respuesta a su solicitud referente a la identificación taxonómica de la(s) muestra(s) botánica(s):

Nombre	FAMILIA	No. COL	Colector	No de Colecta	Determinó
Rosmarinus officinalis L.	LAMIACEAE	612138	Sebastian Mojica & Valentina Flórez	1R	Catalina Garzón L /2019
Thymus vulgaris L.	LAMIACEAE	612139	Sebastian Mojica & Valentina Flórez	1T	Catalina Garzón L /2019

Objetivos

General

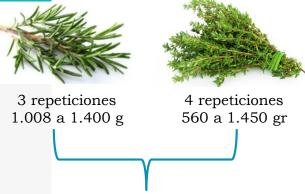

Determinar la posible actividad antifúngica de los aceites esenciales en fitopatógenos de interés agrícola.

Específicos

- Realizar la extracción de los aceites esenciales de *Rosmarinus officinalis* y *Thymus vulgaris* evaluando rendimiento y peso seco.
- Efectuar la caracterización química de los aceites esenciales de *Thymus vulgaris* y *Rosmarinus officinalis*.
- Determinar la concentración específica o CMI en la que los aceites esenciales pueden inhibir el crecimiento de hongos patógenos en cultivos agrícolas.

Análisis del peso seco

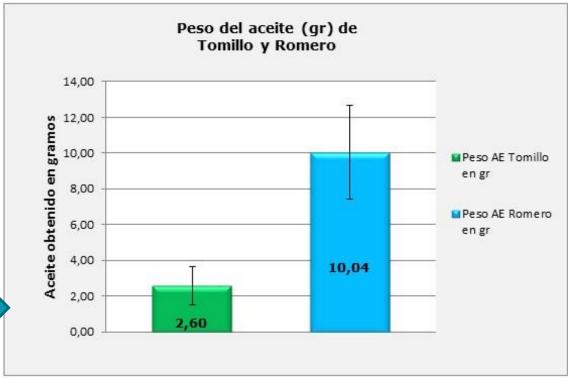
Secado con 10 gr de material vegetal



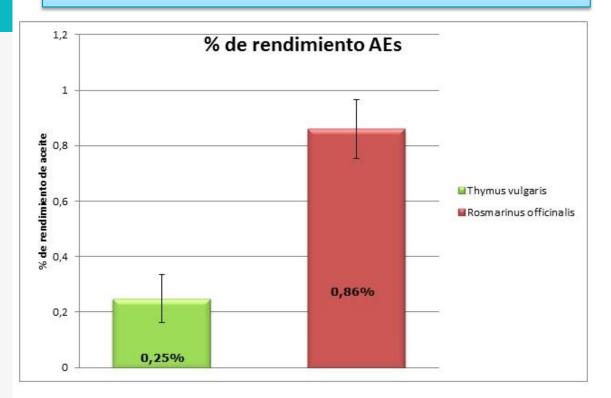
Material vegetal post secado

Porcentaje de peso seco de tomillo y romero.

Determinación de la composición química de los aceites esenciales de Tomillo (*Thymus vulgaris*) y Romero (*Rosmarinus officinalis*) y su posible uso como antifúngico contra microorganismos fitopatógenos en productos agrícolas.


Extracción del aceite esencial

Destilación por arrastre de vapor



Peso del aceite en gramos de Thymus Vulgaris y Rosmarinus officinalis.

Rendimiento de la extracción

Martinello et.al. 2005

Torrenegra M, et.al. 2017

Rendimiento del aceite esencial de *Thymus vulgaris* y *Rosmarinus* officinalis.

Objetivos

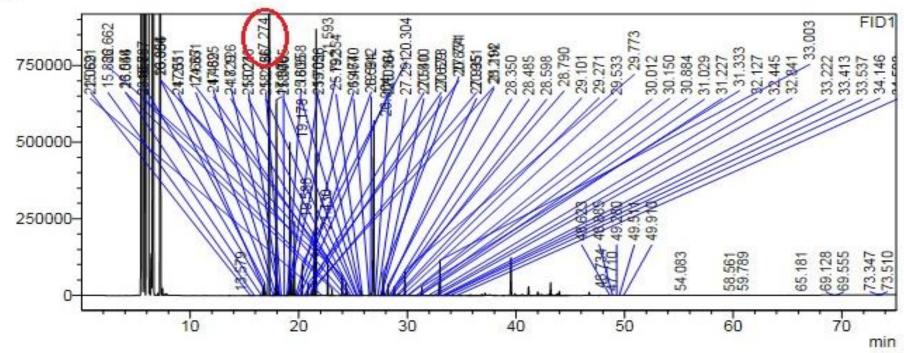
General

Determinar la posible actividad antifúngica de los aceites esenciales en fitopatógenos de interés agrícola.

Específicos

- Para la extracción de los aceites esenciales de *Rosmarinus officinalis* y *Thymus vulgaris* evaluando rendimiento y peso seco.
- Efectuar la caracterización química de los aceites esenciales de *Thymus vulgaris* y *Rosmarinus officinalis*.
- Determinar la concentración específica o CMI en la que los aceites esenciales pueden inhibir el crecimiento de hongos patógenos en cultivos agrícolas.

Composición química de los AE



Cromatógrafo de gases Shimadzu GC2010 acoplado a un detector de ionización de llama FID y cromatógrafo de gases Shimadzu GC2010 acoplado a un detector selectivo de masas MS/GCTQ8040

Romero

Determinación de la abundancia relativa de los compuestos mediante Cromatografía de gases acoplado a un detector por ionización de llama (GC-FID)

Identificación de compuestos mediante la técnica Cromatografía de gases/ Espectrometría de masas (GC/MS)

Calculo índices de retención.

G١			

					GC/	'MS																
	D1 GM D2 GM D3 GM					D4 GM			Promedio													
Ret.Time		Kovacs	Ret.Time		Kovacs	Ret.Time		Kovacs				_	Area%	Kovacs		Nombre						
15.033	0,06	926	15,036		925,6	15,033	0,05	925.52	15,036	0,04		15.034	0,06		5,56			Tricuc	lo[2.2.1.0(2,6)]		trimethul-	
15,245		930,82	15,266		931,35	15,227	2,72	930,37	15,248	2,71		15.246	3,328		0,86	Bicyclo[3.1.0]hex-2-ene, 2-methyl-5-(1-methylethyl)-						
15,544	2,67	938,3	15,561	2,68	938,72	15,532	1,88	938	15,543	1,78	938,27	15.545	2,253	938,3	225				2,6,6-Trimethyl			
15,927	0,03	947,87	15,942	0,06	948,25	15,933	0,03	948,02	15,931	0,02	947,97	15.933	0,035	948,0	275			Bicyclo[3.1.	.0]hex-2-ene, 4	-methylene-1-	(1-methylethyl)	-
16,148	1,01	953,4	16,162	1,64	953,75	16,145	0,94	953,32	16,149	0,72	953,42	16.151	1,078	953,4	725				Car	nphene		
17,201	1,38	979,72				17,355	0,6	983,57	17,288	2,9	981,9	17.281	1,220	98	1,73				1-Oc	ten-3-ol		
18,378	1,66	1009,23	19,687	0,58	1042,25	19,582	0,49	1039,6	18,391	0,81	1009,56	19,010	0,885	102	5,16			Bicyclo[3	.1.0]hex-2-ene,	, 2-methyl-5-(1	-methylethyl)-	
18,633	0,53	1015,66				18,62	0,33	1015,33	18,638	0,32	1015,79	18,630	0,295	1015,59	333					Carene		
18,959	6,61	1023,89				18,94	4,33	1023,4	18,96	2,32	1023,91	18,953	3,315	1023,73	667				(+)-4	-Carene		
19,275	5,83	1031,86	19,287	4,11	1032,16	19,267	6,21	1031,65	19,277	5,28	1031,91	19,277	5,358	1031,	895				o-C	Symene		
19,541	1,16	1038,57				19,539	0,92	1038,52	19,523	0,81	1038,11	19,534	0,723	100	38,4				D-Li	monene		
19,584	0,61	1039,65	19,687	0,58	1042,25	19,582	0,49	1039,6	19,568	0,37	1039,25	19,605	0,513	1040,1	1875			Bicyclo[3	.1.0]hex-2-ene,	, 2-methyl-5-(1	-methylethyl)-	
19,634	0,96	1040,91	19,732	1,03	1043,39	19,637	0,92	1040,99	19,623	0,72	1040,64	19,657	0,908	1041,4	825				Euc	caluptol		
20,242	0,19	1056,25	20,279	0,09	1057,18	20,207	0,08	1055,37	20,235	0,09	1056,07	20,241	0,113	1056,2	2175			1,	3,6-Octatriene	, 3,7-dimethyl-	·. (Z)-	
20,668	7,57	1067	20,688		1067,5	20,668	6,82	1067	20,665	6,09	1066,92	20,672	6,535	1067	,105					Terpinene		
21,02	7,84	1075,88	21,149	7,31	1079,13	20,958	2,54	1074,3	20,993	2,98	1075,2	21,030	5,168	107	6,13	- '						
			No	mbre					Non	nbre ADAM	IC .	Kovacs	Lit Area	Pol	t.Time /	lresy [Ret.Time /	Area*/	Ret.Time /	Droay F	Ret.Time A	1027
2		Trieue		ieptane, 1,7,7-tri	methul-				ieon	Tricyclene			926	2,119	16.778	2,688	16,778	2,011	16,778	1,560	16,778	2,216
				2-methyl-5-(1-п						Thujene			930	1,148	17.128	1,365	17.128	1,136	17.128	0,947	17.128	1,144
2			-	icyclo[3.1.1]hep					Pinene alfa					0,432	17.822	0,403	17.822	0,518	17.822	0,424	17.822	0,381
2				methylene-1-(1-					Thuiene < a->			930	1.222	19.086	1,112	19.086	1,032	19.086	1,376	19.086	1,368	
2			•	phene					Camphene				954	1,698	19.658	3,828	19.658	2,790	19.658	0,096	19.658	0,076
2				en-3-ol					Octanol <3->					2.943	20,781	3,791	20,781	2.835	20.781	2,192	20.781	2,953
2		Bicyclo[3,	1.01hex-2-ene.	2-methyl-5-(1-m	ethulethul)-				Thujene <a-></a->				930 1	7.200	21,309	18,692	21,309	16,209	21,309	18,461	21,309	15,437
2				arene					Carene< Delta-3->				1011	0,641	21.372	0,695	21.372	0,559	21.372	0,567	21.372	0,744
2			(+)-4-	Carene					Carene< Delta-3->				1011	0,641	21.539	0,668	21.539	0,802	21.539	0,684	21.539	0,411
2			o-C)	ymene					(Dymene (o-)		10	026 3	3,473	22.655	42,848	22.655	29,547	22.655	28,526	22.655	32,970
			D-Lin	nonene					Limonene			10	029	0,762	23.005	0,448	23.005	0,598	23.005	1,118	23.005	0,884
		Bicyclo[3	1.0]hex-2-ene,	2-methyl-5-(1-п	ethylethyl)-				Thujene <a-></a->				930	2,366	24.295	1,992	24.295	2,203	24.295	2,728	24.295	2,539
2			Euca	alyptol						1,8-Cineole		1	031	0,252	24.461	0,123	24.461	0,445	24,461	0,248	24.461	0,193
		1,3	3,6-Octatriene,	3,7-dimethyl-, (Z)-				(2	')-β-Ocimene		10	037	0,459	27.694	0,269	27.694	0,395	27.694	0,733	27.694	0,437
			.gamma.	-Terpinene						y-Terpinen		10	059	0,389	28.196	0,337	28.196	0,626	28.196	0,284	28.196	0,309
			.gamma.	-Terpinene						γ-Terpinen				0,820	30.980	0,763	30.980	0,921	30.980	0,906	30.980	0,689
	Bicyclo[3.	1.0]hexan-2-ol	l, 2-methyl-5-(1-	-methylethyl)-, (1.alpha.,2.alph	a.,5.alpha.)-			Sabinene	hydrate (IPP)	vs. OH)			5,955	32.937	12,524	32.937	11,024	32.937	22,823	32.937	17,450
				ien-3-ol						nen-1-ol k(.3Z				1,078	33,363	0,439	33,363	1,244	33,363	1,815	33,363	0,815
		Cyclohe	-	l-6-(1-methyleth	ylidene)-				p-Me	ntha-2, 4 (8)-di	ene			2,685	39.463	2,212	39,463	1,119	39.463	5,453	39.463	1,956
	Linalool					Linalool				1,443	42,326	0,106	42.326	0,360	42.326	0,352	42,326	0,953				
	Bicyclo[3.1.1]heptane-2-carboxaldehyde, 6,6-dimethyl-					Myrtenal				,200	43.097	0,109	43.097	0,020	43.097	0,120	43.097	0,550				
	Octanoic acid, methyl ester				Me	thyl octanoat	e	1	127	0,268	48.145	0,026			48.145	0,038	48.145	1,007				
	Ethanone, 1-(1-methyl-2-cyclopenten-1-yl)-																					
	2,4,6-Octatriene, 2,6-dimethyl-, (E,Z)-						o-allo-ocimen	e		144												
	.alphaCampholenal					α-	Campholenal		1	126												
Cyclohexene, 3-(2-methylpropyl)- Propanoic acid, 2-methyl-, hexyl ester									4454													
										yl isobutanoa			1151									
				thyl-6-(1-methy methyl 4 (1 me						/ p-Menth-1-e crol methyl et			244									
				methyl-4-(1-me 3,7-dimethyl-, (i						icroi metnyi et /β-citral / Z-c			238									
			,o-Octaglenal,	s,r-aimetriyl-, (.	-)-				iveral	rp-citrair2-c	ICI di	la	236									

					G(C/MS						COMPUESTO				
	F1			F2			F3			PROMEDIO		Name				
Ret.Time	Area%	Kovacs	Ret.Time	Area%	Kovacs	Ret.Time	Area%	Kovacs	Ret.Time	Area%	Kovacs	Tricyclo[2.2.1.0(2,6)]heptane, 1,7,7-trimethyl-				
15,063	0,4	926,27	15,045	0,56	925,82	15,049	0,38	925,92	15,052	0,447	926,00	Bicyclo[3.1.0]hex-2-ene, 2-methyl-5-(1-methylethyl)-				
15,192	0,75	929,5	15,183	0,59	929,27	15,185	0,43	929,32	15,187	0,590	929,36	Bicyclo[3.1.0]hex-2-ene, 2-methyl-5-(1-methylethyl)-				
15,329	0,39	932,92	15,312	0,84	932,5	15,325	0,3	932,82	15,322	0,510	932,75	(1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene				
15,555	7,37	938,57	15,562	8,37	938,75	15,563	7,27	938,77	15,560	7,670	938,70	.alphaPinene				
16,254	5,45	956,05	16,240	6,46	955,7	16,243	5,24	955,77	16,246	5,717	955,84	Camphene				
16,414	0,43	960,05	16,407	0,3	959,87	16,4	0,32	959,7	16,407	0,350	959,87	Bicyclo[3.1.0]hex-2-ene, 4-methylene-1-(1-methylethyl)-				
17,381	5,61	984,22	17,385	6,21	984,32	17,394	4,31	984,55	17,387	5,377	984,36	Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-methylene-, (1S)-				
			17,769	2,54	993,92	17,77	2,75	993,95	17,770	1,763	993,94	.betaMyrcene				
			18,632	0,15	1015,64	18,637	0,18	1015,76	18,635	0,110	1015,70	3-Carene				
18,630	0,08	1015,59	18,908	1,77	1022,6	18,908	2,11	1022,6	18,815	1,320	1020,26	(+)-4-Carene				
18,888	1,51	1022,09	19,247	0,41	1031,15				19,068	0,640	1026,62	Benzene, tert-butyl-				
			19,531	9,52	1038,31	19,532	9,97	1038,34	19,532	6,497	1038,33	Bicyclo[3.1.0]hexan-2-ol, 2-methyl-5-(1-methylethyl)-, (1.alpha.,2.alpha.,5.alpha.)-				
			COMPLIES	TO								GC-FID				

COMPUESTO						GC-FID			
			PROMEDIO						
Name	COMPUESTO		FID	F	1		2	1	F3
Tricyclo[2.2.1.0(2,6)]heptane, 1,7,7-trimethyl-	NOMBRE REAL	Kovacs LITE	Area%	Name	Area%	Name	Area%	Name	Area9
Bicyclo[3.1.0]hex-2-ene, 2-methyl-5-(1-methylethyl)-	Tricyclene alfa	926	0,216	16.616	0,013	16.616	0,376	16.616	0,259
Bicyclo[3.1.0]hex-2-ene, 2-methyl-5-(1-methylethyl)-	Thujene alfa	930	0,453	16.778	0,558	16.778	0,477	16.778	0,323
(1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene	Thujene	930	22,480	17.128	25,701	17.128	21,159	17.128	20,58
.alphaPinene	α-Pinene	939	9,529	17.822	9,341	17.822	11,107	17.822	8,140
Camphene	Camphene	954	6,355	19.086	7,183	19.086	7,261	19.086	4,622
Bicyclo[3.1.0]hex-2-ene, 4-methylene-1-(1-methylethyl)-	Thuja-2,4(10)-diene	960	0,854			19.512	1,219	19.512	1,344
Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-methylene-, (1S)-	β-Pinene	979	1,081	19.658	3,185			19.658	0,059
.betaMyrcene	Myrcene beta	990	2,251	20.224	1,363	20.224	2,697	20.224	2,693
3-Carene	δ 3-carene	1011	0,616	20.781	0,537	20.781	0,576	20.781	0,739
(+)-4-Carene	δ 3-carene	1011	0,474	21.123	0,325	21.123	0,432	21.123	0,669
Benzene, tert-butyl-	ψ-Cumene	1025	6,217	21.372	4,755	21.372	7,075	21.372	6,821
Bicyclo[3.1.0]hexan-2-ol, 2-methyl-5-(1-methylethyl)-, (1.alpha.,2.alpha.,5.alpha.)-	Sabinene hydrate-cis	1070	16,601	21.539	15,166	21.539	15,408	21.539	19,22
Eucalyptol	1,8-cineol	1031	1,602	22.655	1,437	22.655	1,728	22.655	1,640
Benzeneacetaldehyde	Benzene acetaldehyde	1042	0,381	23.005	0,299	23.005	0,466	23.005	0,378
1,3,6-Octatriene, 3,7-dimethyl-, (Z)-	β-(Z)-Ocimene	1037	0,836	23.915	0,937	23.915	0,772	23.915	0,80
.gammaTerpinene	γ-Terpinene	1059	12,375	26.894	12,644	26.894	10,206	26.894	14,27
Bicyclo[3.1.0]hexan-2-ol, 2-methyl-5-(1-methylethyl)-, (1.alpha.,2.alpha.,5.alpha.)-	Sabinene hydrate-cis	1070	2,396	27.843	1,351	27.843	2,811	27.843	3,02
Cyclohexene, 3-methyl-6-(1-methylethylidene)-	p-2,4(8)-Menthadiene	1088	0,673	28.196	0,692	28.196	0,531	28.196	0,79
Linalool	Linalool	1096	0,759	28.715	0,463	28.715	0,622	28.715	1,19
Linalool	Linalool	1096	1,27	29.903	1,298	29.903	0,906	29.903	1,60
2,6,6-Trimethylbicyclo[3.2.0]hept-2-en-7-one	Filifolone		2,303	32.937	2,313	32.937	3,075	32.937	1,52
Fenchol	Fenchol, exo-	1121	4,361	39.463	2,459	39.463	6,108	39.463	4,51
Estragole	Chavicol	1250	0,612	41.072	0,569	41.072	0,714	41.072	0,55
Bicyclo[3.1.1]hept-2-ene-2-methanol, 6,6-dimethyl-	Myrtenol	1195							
6-Octen-1-ol, 3,7-dimethyl-, (R)-	Citronellol	1225							

on C

ann MS alis

Rosmarinus officinalis

α-Pineno (22,4%), 1,8 cineol (16,6%) y P-Mentha-2,4(8) dieno (12,3%)

Takayama C, et.al. 2016

Bouyahya A, et.al. 2017

	T de retenci	Colum HP-5N	Teóric (Adan 2007	R. officina	T. vulgar
Compuesto	TR _r	IR_t	IR _L	%	%
α-Pineno	17.128	938	939	22.480	1.148
O-Cimeno	21.309	1032	1026	-	17.200
γ-Terpineno	23.065	1064	1059	1.602	33.473
1,8-Cineol	22.272	1042	1031	16.601	0.762
2,4(8)-p- Mentadieno	26.894	1095	1088	12.375	-
Timol	31.498	1307	1290	-	17.422

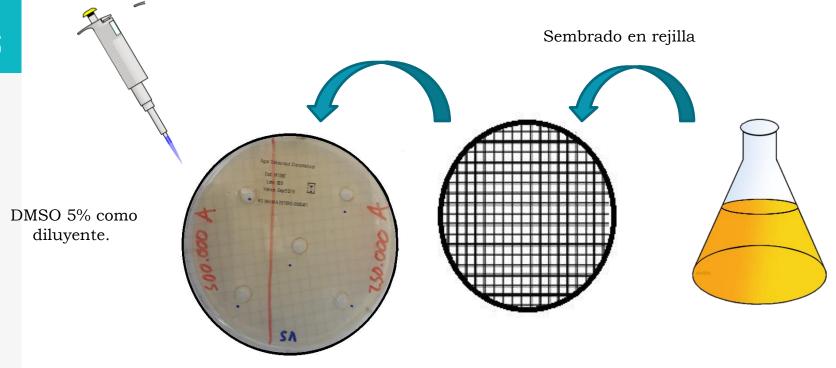
Composición química del AE de romero y tomillo

Thymus Vulgaris

γ-Terpineno (33,4%), O-cimeno (17,20%) y Timol (15,9%)

Miladi H, et.al. 2013

Marques M, 2015


Objetivos

General

Determinar la posible actividad antifúngica de los aceites esenciales en fitopatógenos de interés agrícola.

Específicos

- Para la extracción de los aceites esenciales de *Rosmarinus officinalis* y *Thymus vulgaris* evaluando rendimiento y peso seco.
- Efectuar la caracterización química de los aceites esenciales de *Thymus vulgaris* y *Rosmarinus officinalis*.
- Determinar la concentración específica o CMI en la que los aceites esenciales pueden inhibir el crecimiento de hongos patógenos en cultivos agrícolas.

Método de difusión en agar, pozos hechos en medio del agar.

Сера	[] de AE (mg/mL)	Halo de inhibición (mm)		
	AE puro	Inhibición total		
	500	27 mm ± 2.05		
1 [250	24 mm ± 2.94		
l [125	$6 \text{ mm} \pm 0.82$		
	100	NH		
[50	NH		
Fusarium spp.	25	NH		
	12.5	NH		
	8	NH		
[5	NH		
	2.5	NH		
	1	NH		
[DMSO	NH		
	Control (+)	14 mm ± 0.82		
[Control (-)	NH		

Control (-)	NH
NH: No presenta halo	de inhibición

Сера	[] de AE (mg/mL)	Halo de inhibición (mm)			
	AE puro	Inhibición total			
	500	Inhibición total			
	250	Inhibición total			
	125	12 mm ± 3.68			
	100	13 mm ± 2.36			
80 899	50	NH			
Alternaria Spp.	25	NH			
	12.5	NH			
	8	NH			
	5	NH			
7.	2.5	NH			
	1	NH			
	DMSO	NH			
	Control (+)	14 mm ± 0.82			
	Control (-)	NH			

NH: No presenta halo de inhibición

Determinación de la concentración mínima inhibitoria de AE de Romero frente a *Fusarium* spp. y *Alternaria* spp.

Rivas A, et. al

Determinaron que α-Pineno inhibió crecimiento de *C. albicans*, concluyendo la potencialidad que presenta este compuesto frente a hongos.

Determinaron que 1,8 cineol inhibió redujo el crecimiento de varias especies de *Fusarium* spp.

Morcia C, et. al

Conclusiones

1. La destilación por arrastre de vapor es de las más usadas y sigue mostrando gran viabilidad para su uso, sin embargo el rendimiento de los aceites esenciales es dependiente del método de extracción utilizado para su obtención.

2. Los compuestos químicos caracterizados en este proyecto se correlacionan con otras investigaciones, permitiendo deducir que son estos compuestos los que les confiere la actividad antifúngica al aceite esencial.

3. El aceite esencial de romero presentó mayor inhibición del crecimiento de *Alternaria* spp.

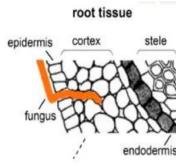
Recomendaciones

Ya que son importante las condiciones del crecimiento de la planta, se sugiere usar material biológico de un cultivo propio con el fin de controlar las variables para asegurar una población homogénea.

Si es posible, usar otros métodos de extracción como la extracción asistida por microondas, debido su alta efectividad y rapidez. Se recomienda realizar las pruebas de inhibición de los aceites esenciales in vivo a fin de comprobar su viabilidad en campo.

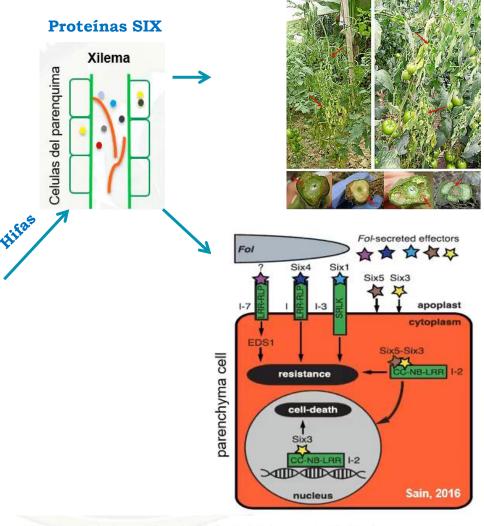
Se sugiere realizar estudios de los compuestos por separado con el fin de determinar cuál de estos es el que presenta la mayor actividad antifúngica.

GRACIAS


Referencias

- Barrera Necha L, García Barrera L. Actividad antifúngica de aceites esenciales y sus compuestos sobre el crecimiento de Fusarium sp. aislado de papaya (Carica papaya). Revista UDO agrícola [Internet]. 2008; 8(1):33-41 [citado 19 Octubre 2018]. Disponible en: http://www.bioline.org.br/pdf?cg08005
- Özcan MM, Chalchat JC. Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int J Food Sci Nutr. 2008;59(7–8):691–8.
- Niurka A, Lauzardo H, Bautista Baños S, Gerardo Velázquez Del Valle M. PROSPECTIVA DE EXTRACTOS VEGETALES PARA CONTROLAR ENFERMEDADES POSTCOSECHA HORTOFRUTÍCOLAS PROSPECTIVE OF PLANT EXTRACTS FOR CONTROLLING POSTHARVEST DISEASES OF HORTICULTURAL PRODUCTS. Vol. 30, Artículo de Revisión Rev. Fitotec. Mex. 2007.
- Elshafie HS, Mancini E, Camele I, Martino L De, De Feo V. In vivo antifungal activity of two essential oils from Mediterranean plants against postharvest brown rot disease of peach fruit. Ind Crops Prod. 2015 Feb 1;66:11–5.

- Hmiri S, Harhar H, Rahouti M. Antifungal activity of essential oils of two plants containing 1,8-cineole as major component: Myrtus communis and Rosmarinus officinalis. J Mater Environ Sci [Internet]. 2015 [citado 2019 Oct 12];6(10):2967–74. Disponible en: www.graphpad.com.
- Da Silva Bomfim N, Nakassugi LP, Faggion Pinheiro Oliveira J, Kohiyama CY, Mossini SAG, Grespan R, et al. Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem. 2015 Jan 1;166:330–6.
- Paueda-Puente EO, Juvera Bracamontes JJ, Romo López IG, Holguín Peña RJ. Evaluación de la actividad antibacteriana in vitro de aceites esenciales de orégano y tomillo contra Ralstonia solanacearum. Rev Mex Ciencias Agrícolas. 2018 Mar 22;(20).
- Pahmouni A, Saidi R, Khaddor M, Pinto E, Da Silva Joaquim Carlos Gomes E, Maouni A. Chemical composition and antifungal activity of five essential oils and their major components against Fusarium oxysporum f. sp. albedinis of Moroccan palm tree. Euro-Mediterranean J Environ Integr. 2019 Dec;4(1).



Coloniza la raíz en las primeras horas

Fo₁

Fusarium oxysporum. sp. lycopersici

